
IBM Enterprise Metal C for z/OS, V3.1

User's Guide
Version 3 Release 1

SC27-9051-00

IBM

IBM Enterprise Metal C for z/OS, V3.1

User's Guide
Version 3 Release 1

SC27-9051-00

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 273.

This edition applies to Version 3 Release 1 of IBM Enterprise Metal C for z/OS (5655-MCE) and to all subsequent
releases and modifications until otherwise indicated in new editions.

Last updated: June 12, 2018

© Copyright IBM Corporation 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document vii
Where to find more information x

z/OS Basic Skills in IBM Knowledge Center . . . x
Technical support x
How to send your comments to IBM xi

If you have a technical problem. xi

Chapter 1. About IBM Enterprise Metal C
for z/OS 1
The Enterprise Metal C for z/OS compiler 2

The C language 2
Enterprise Metal C for z/OS compiler features . . 3

metalc utility 4
About assembling, linking, and binding 4

File format considerations 4
z/OS UNIX System Services 4
Additional features of Enterprise Metal C for z/OS . 5

Chapter 2. Compiler options 7
Specifying compiler options 7

IPA considerations 7
Using special characters 8
Specifying compiler options using #pragma
options 9
Specifying compiler options under z/OS UNIX 10

Compiler option defaults 10
Summary of compiler options 11
Compiler output options 14
Compiler input options 15
Language element control options 15
Object code control options 16
Floating-point and integer control options 17
Error-checking and debugging options 17
Listings, messages, and compiler information
options 18
Optimization and tuning options 19
Portability and migration options 21
Compiler customization options 21
Description of compiler options 21

AGGRCOPY 22
AGGREGATE | NOAGGREGATE 23
ANSIALIAS | NOANSIALIAS 24
ARCHITECTURE 27
ARGPARSE | NOARGPARSE 31
ARMODE | NOARMODE 32
ASM | NOASM 33
ASMDATASIZE 34
ASSERT(RESTRICT) | ASSERT(NORESTRICT) 35
BITFIELD(SIGNED) | BITFIELD(UNSIGNED) . . 36
CHARS(SIGNED) | CHARS(UNSIGNED) . . . 37
COMPACT | NOCOMPACT 38
COMPRESS | NOCOMPRESS 40
CONVLIT | NOCONVLIT 41
CSECT | NOCSECT 43
DEBUG | NODEBUG 46

DEFINE 48
DIGRAPH | NODIGRAPH 49
DSAUSER | NODSAUSER 50
ENUMSIZE 51
EPILOG 53
EVENTS | NOEVENTS 55
EXPMAC | NOEXPMAC. 56
FLAG | NOFLAG 57
FLOAT 58
GOFF | NOGOFF 63
HALT 64
HALTONMSG | NOHALTONMSG 65
HGPR | NOHGPR 66
HOT | NOHOT 67
INCLUDE | NOINCLUDE 68
INFO | NOINFO 69
INITAUTO | NOINITAUTO. 71
INLINE | NOINLINE 73
IPA | NOIPA 75
KEYWORD | NOKEYWORD 78
LANGLVL. 79
LIBANSI | NOLIBANSI 82
LIST | NOLIST 83
LOCALE | NOLOCALE 85
LONGLONG | NOLONGLONG 87
LONGNAME | NOLONGNAME 88
LP64 | ILP32 89
LSEARCH | NOLSEARCH 91
MAKEDEP 97
MARGINS | NOMARGINS 99
MAXMEM | NOMAXMEM 100
MEMORY | NOMEMORY 102
METAL 103
NESTINC | NONESTINC 104
OE | NOOE. 104
OPTFILE | NOOPTFILE 106
OPTIMIZE | NOOPTIMIZE 108
PHASEID | NOPHASEID 111
PPONLY | NOPPONLY 112
PREFETCH | NOPREFETCH 115
PROLOG 116
RENT | NORENT 117
RESERVED_REG 119
RESTRICT | NORESTRICT. 120
ROCONST | NOROCONST 121
ROSTRING | NOROSTRING 123
ROUND 124
SEARCH | NOSEARCH 126
SEQUENCE | NOSEQUENCE 127
SERVICE | NOSERVICE 128
SEVERITY | NOSEVERITY. 130
SHOWINC | NOSHOWINC 131
SHOWMACROS | NOSHOWMACROS . . . 132
SKIPSRC 133
SOURCE | NOSOURCE. 134
SPLITLIST | NOSPLITLIST 135

© Copyright IBM Corp. 2018 iii

SSCOMM | NOSSCOMM 138
STRICT | NOSTRICT 139
STRICT_INDUCTION |
NOSTRICT_INDUCTION 141
SUPPRESS | NOSUPPRESS 142
SYSSTATE 143
TERMINAL | NOTERMINAL. 144
TUNE 145
UNDEFINE 148
UNROLL | NOUNROLL 149
UPCONV | NOUPCONV 150
VECTOR | NOVECTOR. 151
WARN64 | NOWARN64 153
WSIZEOF | NOWSIZEOF 154

Using compiler listing 155
IPA considerations. 155
Compiler listing components 155

Using the IPA link step listing 156
IPA link step listing components 157

Chapter 3. Compiling 161
Input to the compiler 161
Output from the compiler 162

Specifying output files 162
Valid input/output file types 164
Compiling under z/OS batch 165

Using cataloged procedures 165
Using special characters 166
Specifying source files 166
Specifying include files 167
Specifying output files 167
Compiling in the z/OS UNIX System Services
environment. 168

Building a 64-bit application using metalc utility 169
Invoking IPA using metalc utility 169

Compiling with IPA 170
IPA compile step 170
IPA link step 171

Working with object files 172
Browsing object files 172
Identifying object file variations 173

Using feature test macros 173
Using include files. 173

Specifying include file names 173
Forming file names 174
Forming data set names with LSEARCH |
SEARCH options 175
Search sequence 177
Determining whether the file name is in
absolute form 178
Using SEARCH and LSEARCH 180

Search sequences for include files 182

Chapter 4. Using IPA link step with
programs 185
Invoking IPA using metalc utility 185
Compiling under z/OS batch 186
Reference Information 186

IPA link step control file 186
Object file directives understood by IPA . . . 190

Troubleshooting 190

Chapter 5. Assembling 191

Chapter 6. Binding programs 193
Binding under z/OS UNIX 193
Binding under z/OS batch 193

Chapter 7. Running a C application 195

Chapter 8. Building Enterprise Metal C
for z/OS programs 197

Chapter 9. Cataloged procedures . . . 199
Tailoring cataloged procedures 199
Data sets used 200

Description of data sets used 200

Chapter 10. CDAHLASM — Use the
HLASM assembler to create DWARF
debug information 205

Chapter 11. make utility 207
Creating makefiles. 207

Chapter 12. BPXBATCH utility 209

Chapter 13. as — Use the HLASM
assembler to produce object files . . 213

Chapter 14. metalc — Compiler
invocation using a customizable
configuration file 219
Setting up the compilation environment 219

Environment variables 219
Setting up a configuration file 221

Configuration file attributes 221
Tailoring a configuration file 224
Default configuration file 224

Invoking the compiler 224
Supported options. 225

–q options syntax 225
Flag options syntax 226
Specifying compiler options 229

Appendix. Accessibility 233
Accessibility features 233
Consult assistive technologies 233
Keyboard navigation of the user interface 233
Dotted decimal syntax diagrams 233

Glossary 237
A 237
B 240
C 241
D 246
E 249

iv User's Guide

F 251
G 252
H 253
I. 254
J. 256
K 256
L 256
M 258
N 259
O 260
P 261
Q 264
R 264

S 266
T 269
U 270
V 270
W 271

Notices 273
Programming interface information 274
Trademarks 274
Standards 274

Index 277

Contents v

vi User's Guide

About this document

This edition of Enterprise Metal C for z/OS User's Guide is intended for users of
the IBM® Enterprise Metal C for z/OS®, V3.1 compiler. It provides you with
information about implementing (compiling, assembling, linking, and running)
programs that are written in C. It contains guidelines for preparing C programs to
run on the z/OS operating system.

Who should read this document

This document is intended for users of Enterprise Metal C for z/OS.

Typographical conventions

The following table explains the typographical conventions used in this document.

Table 1. Typographical conventions

Typeface Indicates Example

bold Commands, executable names,
compiler options and pragma
directives that contain lower-case
letters.

The metalc invocation command
invokes the Enterprise Metal C for z/OS
compiler.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than the
size requested.

monospace Programming keywords and
library functions, compiler built-in
functions, file and directory names,
examples of program code,
command strings, or user-defined
names.

If one or two cases of a switch
statement are typically executed much
more frequently than other cases, break
out those cases by handling them
separately before the switch statement.

How to read syntax diagrams

This section describes how to read syntax diagrams. It defines syntax diagram
symbols, items that may be contained within the diagrams (keywords, variables,
delimiters, operators, fragment references, operands) and provides syntax examples
that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments)
that comprise a command statement. They are read from left to right and from top
to bottom, following the main path of the horizontal line.

For users accessing IBM Knowledge Center using a screen reader, syntax diagrams
are provided in dotted decimal format.

The following symbols may be displayed in syntax diagrams:

Symbol
Definition

►►─── Indicates the beginning of the syntax diagram.

© Copyright IBM Corp. 2018 vii

───► Indicates that the syntax diagram is continued to the next line.

►─── Indicates that the syntax is continued from the previous line.

───►◄ Indicates the end of the syntax diagram.

Syntax diagrams contain many different items. Syntax items include:
v Keywords - a command name or any other literal information.
v Variables - variables are italicized, appear in lowercase, and represent the name

of values you can supply.
v Delimiters - delimiters indicate the start or end of keywords, variables, or

operators. For example, a left parenthesis is a delimiter.
v Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal

(=), and other mathematical operations that may need to be performed.
v Fragment references - a part of a syntax diagram, separated from the diagram to

show greater detail.
v Separators - a separator separates keywords, variables or operators. For example,

a comma (,) is a separator.

Note: If a syntax diagram shows a character that is not alphanumeric (for
example, parentheses, periods, commas, equal signs, a blank space), enter the
character as part of the syntax.

Keywords, variables, and operators may be displayed as required, optional, or
default. Fragments, separators, and delimiters may be displayed as required or
optional.

Item type
Definition

Required
Required items are displayed on the main path of the horizontal line.

Optional
Optional items are displayed below the main path of the horizontal line.

Default
Default items are displayed above the main path of the horizontal line.

The following table provides syntax examples.

Table 2. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path
of the horizontal line. You must specify
these items.

►► KEYWORD required_item ►◄

Required choice.

A required choice (two or more items)
appears in a vertical stack on the main
path of the horizontal line. You must
choose one of the items in the stack.

►► KEYWORD required_choice1
required_choice2

►◄

viii User's Guide

Table 2. Syntax examples (continued)

Item Syntax example

Optional item.

Optional items appear below the main
path of the horizontal line.

►► KEYWORD
optional_item

►◄

Optional choice.

An optional choice (two or more items)
appears in a vertical stack below the main
path of the horizontal line. You may
choose one of the items in the stack.

►► KEYWORD
optional_choice1
optional_choice2

►◄

Default.

Default items appear above the main path
of the horizontal line. The remaining
items (required or optional) appear on
(required) or below (optional) the main
path of the horizontal line. The following
example displays a default with optional
items.

►►
default_choice1

KEYWORD
optional_choice2
optional_choice3

►◄

Variable.

Variables appear in lowercase italics. They
represent names or values.

►► KEYWORD variable ►◄

Repeatable item.

An arrow returning to the left above the
main path of the horizontal line indicates
an item that can be repeated.

A character within the arrow means you
must separate repeated items with that
character.

An arrow returning to the left above a
group of repeatable items indicates that
one of the items can be selected,or a
single item can be repeated.

►► ▼KEYWORD repeatable_item ►◄

►► ▼

,

KEYWORD repeatable_item ►◄

Fragment.

The fragment symbol indicates that a
labelled group is described below the
main syntax diagram. Syntax is
occasionally broken into fragments if the
inclusion of the fragment would overly
complicate the main syntax diagram.

►► KEYWORD fragment ►◄

fragment:

,required_choice1
,default_choice

,required_choice2
,optional_choice

Softcopy documents

The Enterprise Metal C for z/OS publications are supplied in PDF format and
available for download from the Enterprise Metal C for z/OS Knowledge Center
home page (www.ibm.com/support/knowledgecenter/en/SSSHGK_3.1.0/
com.ibm.metalc.v3r1.doc/welcome.html).

About this document ix

https://www.ibm.com/support/knowledgecenter/en/SSSHGK_3.1.0/com.ibm.metalc.v3r1.doc/welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSSHGK_3.1.0/com.ibm.metalc.v3r1.doc/welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSSHGK_3.1.0/com.ibm.metalc.v3r1.doc/welcome.html

To read a PDF file, use the Adobe Reader. If you do not have the Adobe Reader,
you can download it (subject to Adobe license terms) from the Adobe website
(www.adobe.com).

You can also browse the documents on the World Wide Web by visiting the
Enterprise Metal C for z/OS Knowledge Center home page (www.ibm.com/
support/knowledgecenter/en/SSSHGK_3.1.0/com.ibm.metalc.v3r1.doc/
welcome.html).

Where to find more information
For an overview of the information associated with z/OS, see z/OS Information
Roadmap.

Additional information on Enterprise Metal C for z/OS is available on the
Marketplace page for Enterprise Metal C for z/OS (www.ibm.com/us-en/
marketplace/xl-cpp-compiler-zos).

z/OS Basic Skills in IBM Knowledge Center
z/OS Basic Skills in IBM Knowledge Center is a Web-based information resource
intended to help users learn the basic concepts of z/OS, the operating system that
runs most of the IBM mainframe computers in use today. IBM Knowledge Center
is designed to introduce a new generation of Information Technology professionals
to basic concepts and help them prepare for a career as a z/OS professional, such
as a z/OS system programmer.

Specifically, z/OS Basic Skills is intended to achieve the following objectives:
v Provide basic education and information about z/OS without charge
v Shorten the time it takes for people to become productive on the mainframe
v Make it easier for new people to learn z/OS.

z/OS Basic Skills in IBM Knowledge Center (www.ibm.com/support/
knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html) is available to all
users (no login required).

Technical support

Additional technical support is available from the Enterprise Metal C for z/OS
Support page (https://www.ibm.com/support/home/product/
A032956W76367A04/IBM_Enterprise_Metal_C_for_z/OS). This page provides a
portal with search capabilities to technical support FAQs and other support
documents.

For the latest information about Enterprise Metal C for z/OS, visit Marketplace
page for Enterprise Metal C for z/OS (www.ibm.com/us-en/marketplace/xl-cpp-
compiler-zos).

If you cannot find what you need, you can e-mail:

compinfo@cn.ibm.com

x User's Guide

http://www.adobe.com
http://www.adobe.com
https://www.ibm.com/support/knowledgecenter/en/SSSHGK_3.1.0/com.ibm.metalc.v3r1.doc/welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSSHGK_3.1.0/com.ibm.metalc.v3r1.doc/welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSSHGK_3.1.0/com.ibm.metalc.v3r1.doc/welcome.html
https://www.ibm.com/us-en/marketplace/metal-c-compiler-zos
https://www.ibm.com/us-en/marketplace/metal-c-compiler-zos
http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
https://www.ibm.com/support/home/product/A032956W76367A04/IBM_Enterprise_Metal_C_for_z/OS
https://www.ibm.com/support/home/product/A032956W76367A04/IBM_Enterprise_Metal_C_for_z/OS
https://www.ibm.com/support/home/product/A032956W76367A04/IBM_Enterprise_Metal_C_for_z/OS
https://www.ibm.com/us-en/marketplace/metal-c-compiler-zos
https://www.ibm.com/us-en/marketplace/metal-c-compiler-zos
https://www.ibm.com/us-en/marketplace/metal-c-compiler-zos

How to send your comments to IBM

We appreciate your input on this documentation. Please provide us with any
feedback that you have, including comments on the clarity, accuracy, or
completeness of the information.

You can send an email to compinfo@cn.ibm.com and include the following
information:
v Your name and address
v Your email address
v Your phone or fax number
v The publication title and order number:

Enterprise Metal C for z/OS User's Guide
SC27-9051-00

v The topic and page number or URL of the specific information to which your
comment relates

v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
If you have a technical problem, take one or more of the following actions:
v Visit the IBM Support Portal (support.ibm.com).
v Contact your IBM service representative.
v Call IBM technical support.

About this document xi

mailto:compinfo@cn.ibm.com
http://support.ibm.com

xii User's Guide

Chapter 1. About IBM Enterprise Metal C for z/OS

IBM Enterprise Metal C for z/OS provides support for C application development
on the z/OS platform.

Enterprise Metal C for z/OS includes:
v A C compiler (referred to as the Enterprise Metal C for z/OS compiler)
v A set of utilities for C application development

IBM Enterprise Metal C for z/OS delivers a high-level language alternative to
writing programs in High Level Assembler (HLASM) and creates low-level,
freestanding applications with high performance. The generated HLASM code has
no Language Environment® runtime dependencies and follows the MVS linkage
conventions for passing parameters, returning values, and setting up function save
areas that are described in the MVS Programming: Assembler Services Guide.
Enterprise Metal C for z/OS enables the use of C as the language for system
programming where the Language Environment is either unavailable or
undesirable, for example, writing system user exits. You cannot use the Enterprise
Metal C for z/OS compiler to compile Language Environment dependent C source
files.

The resulting programs could have direct access to z/OS system services and do
not require the C runtime for execution. The final code generated by the Enterprise
Metal C for z/OS compiler is in HLASM source code format. You need to invoke
the HLASM assembler as an additional step to produce the object code from the
compiler-generated HLASM source code.

A subset of the C library functions is provided. For further information on
programming with Enterprise Metal C for z/OS and the library that is provided,
see Enterprise Metal C for z/OS Programming Guide and Reference.

Using the Enterprise Metal C for z/OS compiler can be viewed as a joint venture
between the compiler and users. The compiler is responsible for generating the
machine instructions that represent the C program. Users are responsible for
providing the stack space (or the dynamic storage area) required by the C
program. Users can decide if the stack space is provided by using the default
prolog and epilog code generated by the compiler, or by supplying their own
prolog and epilog code. Users are also given the facilities to embed assembly
statements within the C program so, for example, system macros can be invoked.

You may need to switch addressing mode (AMODE) between programs. The
default AMODE assigned by the Enterprise Metal C for z/OS compiler is based on
the LP64 compiler option or the ILP32 compiler option. AMODE 64 is assigned
when LP64 is specified and AMODE 31 is assigned when ILP32 is specified. The
Enterprise Metal C for z/OS compiler can generate code for calling an external
function with an AMODE that is different from the default AMODE. This
capability supports the creation of METAL C programs that require AMODE
switching across functions. The resulting compiler generated code follows the
linkage conventions expected by the called function, particularly in the areas of
save area format and the parameter list width.

Notes:

© Copyright IBM Corp. 2018 1

1. The compiler-generated code does not establish code base registers.
2. Because of the flat name space and the case insensitivity required by HLASM,

the compiler prepends extra qualifiers to user names to maintain uniqueness of
each name seen by HLASM. This is referred to as name-encoding. For local
symbols, HLASM also has the 63-character length limit. Name-encoded local
symbols have a maximum of 63 characters. External symbols are not subject to
the name-encoding scheme as they need to be referenced by the exact names.

3. The maximum length of an external symbol allowed by HLASM is 256
characters. You must ensure that all external symbols are acceptable to HLASM.

4. You must provide C library functions that are not provided by IBM if you need
them.

5. It is your responsibility to ensure the correctness of your assembly code,
including prolog and epilog code, and inlined assembly code.

6. When binding or linking, you may need to specify the ENTRY name.
7. No ASCII version of the Metal C runtime libraries is available, even though the

ASCII compiler option is supported.

The IPA compile phase only produces a binary IPA object as the output file. It does
not produce object code or HLASM source code.

During the IPA link phase, all external references must be resolved. IPA does not
attempt to convert external object modules or load modules into object code for the
inclusion in the IPA produced program. You need to provide the same set of
library data sets to both IPA link and the binder for symbol resolution.

If you supply your own prolog/epilog code using the PROLOG and EPILOG
compiler options, IPA link will keep the relationship between the prolog/epilog
code and the designated functions at the compilation unit level.

If you have #pragma insert_asm in your source file, IPA link will assume the
strong connection between the string provided by the pragma and the functions in
the source file. IPA link will not move functions defined in that source file to
anywhere else.

The output file from the IPA link step is one single HLASM source file for the
whole program. Under z/OS UNIX, the output HLASM source file resides in the
directory where the IPA link took place. The default output file name for z/OS
UNIX is a.s. In BATCH mode, the output HLASM source file goes in the data set
allocated to DD SYSLIN in the IPA link step.

The Enterprise Metal C for z/OS compiler
The following sections describe the C language and the Enterprise Metal C for
z/OS compiler.

The C language
The C language is a general purpose, versatile, and functional programming
language that allows a programmer to create applications quickly and easily. C
provides high-level control statements and data types as do other structured
programming languages. It also provides many of the benefits of a low-level
language.

2 User's Guide

Enterprise Metal C for z/OS compiler features
The Enterprise Metal C for z/OS compiler offers many features to increase your
productivity and improve program execution times:
v Minimizes dependence on expert HLASM skills.
v Optimization support:

– Algorithms to take advantage of the IBM Z® environment to achieve
improved optimization and memory usage through the ARCH, TUNE, OPTIMIZE,
and IPA compiler options.

– The OPTIMIZE compiler option, which instructs the compiler to optimize the
machine instructions it generates to try to produce faster-running object code
and improve application performance at run time.

– Interprocedural Analysis (IPA), to perform optimizations across procedural
and compilation unit boundaries, thereby optimizing application performance
at run time.

– Additional optimization capabilities are available with the INLINE compiler
option.

v Take advantage of new hardware features by simply recompiling the code.
v Full program reentrancy

With reentrancy, many users can simultaneously run a program. A reentrant
program uses less storage if it is stored in the Link Pack Area (LPA) or the
Extended Link Pack Area (ELPA) and simultaneously run by multiple users. It
also reduces processor I/O when the program starts up, and improves program
performance by reducing the transfer of data to auxiliary storage. Programmers
can design programs that are naturally reentrant. For those programs that are
not naturally reentrant, programmers can use constructed reentrancy. To do this,
compile programs with the RENT option and use the program management
binder supplied with z/OS and program management binder.

v The ability to call and be called by other languages such as assembler, C/C++,
COBOL, PL/1, compiled Java™, and Fortran, to enable you to integrate
Enterprise Metal C for z/OS code with existing applications.

v Support runtime independent features in the following standards at the system
level:
– System programming capabilities, which allow you to use Enterprise Metal C

for z/OS in place of assembler
– ISO/IEC 9899:1999

– ISO/IEC 9945-1:1990 (POSIX-1)/IEEE POSIX 1003.1-1990

– The core features of IEEE POSIX 1003.1a, Draft 6, July 1991

– IEEE Portable Operating System Interface (POSIX) Part 2, P1003.2

– The core features of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE
POSIX committee has renumbered POSIX.4a to POSIX.1c)

– X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2

– The core features of IEEE 754-1985 (R1990) IEEE Standard for Binary
Floating-Point Arithmetic (ANSI), as applicable to the IBM Z® environment.

– X/Open CAE Specification, Networking Services, Issue 4

– X/Open Specification Programming Languages, Issue 3, Common Usage C

– A subset of IEEE Std. 1003.1-2001 (Single UNIX Specification, Version 3)

– A subset of ISO/IEC 9899:2011

– ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)
– FIPS-160

Chapter 1. About IBM Enterprise Metal C for z/OS 3

v Support for the Euro currency

metalc utility
The Enterprise Metal C for z/OS compiler provide the metalc utility to invoke the
compiler using a customizable configuration file.

About assembling, linking, and binding
You can use the Enterprise Metal C for z/OS compiler to compile your programs
that are written in the C language syntax to generate code in assembler source
program format that can be compiled by the High Level Assembler compiler.
When describing the process to assemble an application, this document refers to
the assemble step.

When describing the process to build an application, this document refers to the
bind step.

Normally, the program management binder is used to perform the bind step.
However, in many cases the link step can be used in place of the bind step. When
they cannot be substituted, and the program management binder alone must be
used, it will be stated.

The terms bind and link have multiple meanings.
v With respect to building an application:

In both instances, the program management binder is performing the actual
processing of converting the object file(s) into the application executable module.
Object files with reentrant writable static symbols and DLL-style function calls
require additional processing to build global data for the application. The term
link refers to the case where the binder does not perform this additional
processing, because none of the object files in the application use constructed
reentrancy or long names.
The term bind refers to the case where the binder is required to perform this
processing.

v With respect to executing code in an application:
The linkage definition refers to the program call linkage between program
functions. This includes the passing of control and parameters.
Enterprise Metal C for z/OS supports the MVS™ linkage convention for C.

File format considerations
You can use the binder in place of the linkage editor but there are exceptions
involving file format considerations. For further information, on when you cannot
use the binder, see Chapter 6, “Binding programs,” on page 193.

z/OS UNIX System Services
z/OS UNIX System Services provides capabilities under z/OS to make it easier to
implement or port applications in an open, distributed environment. You can build
Metal C applications under z/OS UNIX.

z/OS UNIX provides support for both existing z/OS applications and new z/OS
UNIX applications through the following ways:
v C programming language support as defined by ISO C

4 User's Guide

v z/OS UNIX extensions that provide z/OS-specific support beyond the standards
v The z/OS UNIX Shell and Utilities feature, which provides:

– A shell, based on the Korn Shell and compatible with the Bourne Shell
– A shell, tcsh, based on the C shell, csh
– Tools and utilities that support the X/Open Single UNIX Specification, also

known as X/Open Portability Guide (XPG) Version 4, Issue 2, and provide z/OS
support. The following list is a partial list of utilities that are included:

as Invokes HLASM to create assembler applications

BPXBATCH
Allows you to submit batch jobs that run shell commands, scripts, or
Enterprise Metal C for z/OS executable files in z/OS UNIX files from
a shell session

ld Combines object files and archive files into an output executable file,
resolving external references

metalc Allows you to invoke the compiler using a customizable configuration
file

v Access to the Hierarchical File System (HFS), with support for the POSIX.1 and
XPG4 standards

v Access to the z/OS File System (zFS), which provides performance
improvements over HFS, and also supports the POSIX.1 and XPG4 standards

For application developers who have worked with other UNIX environments, the
z/OS UNIX Shell and Utilities is a familiar environment for Enterprise Metal C for
z/OS application development. If you are familiar with existing MVS development
environments, you may find that the z/OS UNIX System Services environment can
enhance your productivity. Refer to z/OS UNIX System Services User's Guide for
more information about the Shell and Utilities.

Additional features of Enterprise Metal C for z/OS

Feature Description

long long data type Enterprise Metal C for z/OS supports long long as a native data type when the
compiler option LANGLVL(LONGLONG) is in effect. This option is enabled by default by
the compiler option LANGLVL(EXTENDED). The compiler supports long long as a native
data type when the LANGLVL(STDC99) option or LANGLVL(EXTC99) option is in effect.

Extended precision
floating-point numbers

Enterprise Metal C for z/OS provides three IBM z/Architecture® floating-point
number data types: single precision (32 bits), declared as float; double precision (64
bits), declared as double; and extended precision (128 bits), declared as long double.

Extended precision floating-point numbers give greater accuracy to mathematical
calculations.

Enterprise Metal C for z/OS also supports IEEE 754 floating-point representation
(base-2 or binary floating-point formats). By default, float, double, and long double
values are represented in the IEEE 754 floating-point representation . For details on
this support, see “FLOAT” on page 58.

Selected built-in library
functions

For selected library functions, the compiler generates an instruction sequence directly
into the object code during optimization to improve execution performance. String and
character functions are examples of these built-in functions. No actual calls to the
library are generated when built-in functions are used.

Chapter 1. About IBM Enterprise Metal C for z/OS 5

Feature Description

Packed structures and
unions

Enterprise Metal C for z/OS provides support for packed structures and unions.
Structures and unions may be packed to reduce the storage requirements of a
Enterprise Metal C for z/OS program or to define structures that are laid out
according to COBOL or PL/I structure alignment rules.

Exploitation of hardware
Use the ARCHITECTURE compiler option to select the minimum level of machine
architecture on which your program will run. Note that certain features provided by
the compiler require a minimum architecture level. For more information, refer to
“ARCHITECTURE” on page 27.

Use the TUNE compiler option to optimize your application for a specific machine
architecture within the constraints imposed by the ARCHITECTURE option. The TUNE level
must not be lower than the setting in the ARCHITECTURE option. For more information,
refer to “TUNE” on page 145.

Long name support For portability, external names can be mixed case and up to 32 K - 1 characters in
length.

Built-in functions for
floating-point and other
hardware instructions

Use built-in functions for floating-point and other hardware instructions that are
otherwise inaccessible to Enterprise Metal C for z/OS programs.

Vector processing support Enterprise Metal C for z/OS compiler provides vector programming support for
programmers to make use of the Vector Facility for z/Architecture.

6 User's Guide

Chapter 2. Compiler options

This information describes the options that you can use to alter the compilation of
your program.

Specifying compiler options
You can override your installation default options when you compile your
Enterprise Metal C for z/OS program, by specifying an option in one of the
following ways:
v In the CPARM parameter of the IBM-supplied cataloged procedures, when you

are compiling under z/OS batch.
See Chapter 3, “Compiling,” on page 161 and Chapter 9, “Cataloged
procedures,” on page 199 for details.

v In your own JCL procedure, by passing a parameter string to the compiler.
v In an options file. See “OPTFILE | NOOPTFILE” on page 106 for details.
v In a #pragma options preprocessor directive within your source file. See

“Specifying compiler options using #pragma options” on page 9 for details.
Compiler options that you specify on the command line or in the CPARM
parameter of IBM-supplied cataloged procedures can override compiler options
that are used in #pragma options. The exception is CSECT, where the #pragma
csect directive takes precedence.

v On the command line of the metalc utility, by using the -q option or the -Wc and
-Wl,I options to pass options to the compiler.

IPA considerations
The following sections explain what you should be aware of if you request
Interprocedural Analysis (IPA) through the IPA option.

Applicability of compiler options under IPA

You should keep the following points in mind when specifying compiler options
for the IPA compile or IPA link step:
v Many compiler options do not have any special effect on IPA. For example, the

PPONLY option processes source code, then terminates processing prior to IPA
compile step analysis.

v #pragma directives in your source code, and compiler options you specify for the
IPA compile step, may conflict across compilation units.
#pragma directives in your source code, and compiler options you specify for the
IPA compile step, may conflict with options you specify for the IPA link step.
IPA will detect such conflicts and apply default resolutions with appropriate
diagnostic messages. The Compiler Options Map section of the IPA link step
listing displays the conflicts and their resolutions.
To avoid problems, use the same options and suboptions on the IPA compile and
IPA link steps. Also, if you use #pragma directives in your source code, specify
the corresponding options for the IPA link step.

v If you specify a compiler option that is irrelevant for a particular IPA step, IPA
ignores it and does not issue a message.

© Copyright IBM Corp. 2018 7

During IPA compile step processing, IPA handles conflicts between IPA suboptions
and certain compiler options that affect code generation.

If you specify a compiler option for the IPA compile step, but do not specify the
corresponding suboption of the IPA option, the compiler option may override the
IPA suboption. Table 3 shows how the OPT and LIST compiler options interact
with the OPT and LIST suboptions of the IPA option. The xxxx indicates the name
of the option or suboption. NOxxxx indicates the corresponding negative option or
suboption.

Table 3. Interactions between compiler options and IPA suboptions

Compiler Option
Corresponding IPA
Suboption Value used in IPA Object

no option specified no suboption specified NOxxxx

no option specified NOxxxx NOxxxx

no option specified xxxx xxxx

NOxxxx no option specified NOxxxx

NOxxxx NOxxxx NOxxxx

NOxxxx xxxx xxxx

xxxx no option specified xxxx

xxxx NOxxxx xxxx 1

xxxx xxxx xxxx

Note: 1An informational message is produced that indicates that the suboption
NOxxxx is promoted to xxxx.

Using special characters
Under TSO

When z/OS UNIX file names contain the special characters
v blank
v backslash
v double quotation mark

A backslash (\) must precede these characters.

Note: Under TSO, a backslash \ must precede special characters in file names and
options.

Two backslashes must precede suboptions that contain these special characters:
v left parenthesis (
v right parenthesis)
v comma
v backslash
v blank
v double quotation mark
v less than <
v greater than >

For example:

8 User's Guide

def(errno=\\(*__errno\\(\\)\\))

Under the z/OS UNIX System Services shell

The z/OS UNIX System Services shell imposes its own parsing rules.

metalc uses the -q syntax, which does not use parentheses and is more convenient
for shell invocation. See Chapter 14, “metalc — Compiler invocation using a
customizable configuration file,” on page 219 for more information.

Under z/OS batch

When invoking the compiler directly (not through a cataloged procedure), you
should type a single quotation mark (') within a string as two single quotation
marks (''), as follows:
//COMPILE EXEC PGM=CJTDRVR,PARM=’OPTFILE(’’USERID.OPTS’’)’

If you are using the same string to pass a parameter to a JCL PROC, use four
single quotation marks (''''), as follows:
//COMPILE EXEC MTCC,CPARM=’OPTFILE(’’’’USERID.OPTS’’’’)’

Special characters in z/OS UNIX file names that are referenced in DD cards do not
need a preceding backslash. For example, the special character blank in the file
name obj 1.o does not need a preceding backslash when it is used in a DD card:
//SYSLIN DD PATH='u/user1/obj 1.o'

A backslash must precede special characters in z/OS UNIX file names that are
referenced in the PARM statement. The special characters are: backslash, blank, and
double quotation mark. For example, a backslash precedes the special character
blank in the file name opt file, when used in the PARM keyword:
//STEP1 EXEC PGM=CJTDRVR,PARM=’OPTFILE(/u/user1/opt\ file)’

Specifying compiler options using #pragma options
You can use the #pragma options preprocessor directive to override the default
values for compiler options. The exception is LONGNAME | NOLONGNAME, where the
compiler options override the #pragma preprocessor directives. Compiler options
that are specified on the command line or in the CPARM parameter of the
IBM-supplied cataloged procedures can override compiler options that are used in
#pragma options. The exception is CSECT, where the #pragma csect directive takes
precedence.

The #pragma options preprocessor directive must appear before the first C source
statement in your input source file. Only comments and other preprocessor
directives can precede the #pragma options directive. Only the options that are
listed below can be specified in a #pragma options directive. If you specify a
compiler option that is not in the following list, the compiler generates a warning
message, and does not use the option.

AGGREGATE ANSIALIAS
ARCHITECTURE INLINE
LIBANSI MAXMEM
OPTIMIZE RENT
SERVICE TUNE
UPCONV

Chapter 2. Compiler options 9

Notes:

1. When you specify conflicting attributes explicitly, or implicitly by the
specification of other options, the last explicit option is accepted. The compiler
usually does not issue a diagnostic message indicating that it is overriding any
options.

2. When you compile your program with the SOURCE compiler option, an options
list in the listing indicates the options in effect at invocation. The values in the
list are the options that are specified on the command line, or the default
options that were specified at installation. These values do not reflect options
that are specified in the #pragma options directive.

Specifying compiler options under z/OS UNIX
The metalc utility invokes the Enterprise Metal C for z/OS compiler with the
compiler options. For further information, see “Compiler option defaults.”

To change compiler options, use an appropriate metalc utility option. For example,
use -I to set the search option that specifies where to search for #include files. If
there is no appropriate metalc option, use -q or -Wc to specify a needed compiler
option. For example, specify -Wc,expo to export all functions and variables.

For a detailed description metalc utility, refer to Chapter 14, “metalc — Compiler
invocation using a customizable configuration file,” on page 219.

For compiler options that take file names as suboptions, you can specify a
sequential data set, a partitioned data set, or a partitioned data set member by
prefixing the name with two slashes (//). The rest of the name follows the same
syntax rule for naming data sets. Names that are not preceded with two slashes are
z/OS UNIX file names. For example, to specify HQ.PROG.LIST as the source listing
file (HQ being the high-level qualifier), use SOURCE(//’HQ.PROG.LIST’). The single
quotation mark is needed for specifying a full file name with a high-level qualifier.

Note: Both the IPA link step and IPA compile step make use of 64-bit virtual
memory, which might cause the Enterprise Metal C for z/OS compiler to abend if
there is insufficient storage. Increasing the default MEMLIMIT system parameter
size in the SMFPRMx parmlib member to 3000 MB can overcome the problem. The
default takes effect if a job does not specify MEMLIMIT in the JCL JOB or EXEC
statement, or REGION=0 in the JCL; the MEMLIMIT specified in an IEFUSI exit
routine overrides all other MEMLIMIT settings. For information on the ulimit
command, which can be used in z/OS UNIX to set MEMLIMIT, see z/OS UNIX
System Services Command Reference. For additional information about the
MEMLIMIT system parameter, see z/OS MVS Programming: Extended Addressability
Guide.

Compiler option defaults
You can use various options to change the compilation of your program. You can
specify compiler options when you invoke the compiler or, in a C program, in a
#pragma options directive in your source program. Options, that you specify when
you invoke the compiler, override installation defaults and most compiler options
that are specified through a #pragma options directive.

The compiler option defaults that are supplied by IBM can be changed to other
selected defaults when Enterprise Metal C for z/OS is installed.

10 User's Guide

To find out the current defaults, compile a program with only the SOURCE compiler
option specified. The compiler listing shows the options that are in effect at
invocation. The listing does not reflect options that are specified through a #pragma
options directive in the source file.

The metalc utility that runs in the z/OS UNIX shell specify certain compiler
options in order to support POSIX standards. For a detailed description, refer to
Chapter 14, “metalc — Compiler invocation using a customizable configuration
file,” on page 219, or to the z/OS UNIX System Services Command Reference. For
some options, the utility specify values that are different than the supplied defaults
in MVS batch or TSO environments. However, for many options, the utility
specifies the same values as in MVS batch or TSO. There are also some options
that the utility does not specify explicitly. In those cases, the default value is the
same as in batch or TSO. An option that you specify explicitly using the metalc
utility overrides the setting of the same option if it is specified using a #pragma
options directive. The exception is CSECT, where the #pragma csect directive takes
precedence.

In effect, invoking the compiler with the metalc utility overrides the default values
for many options, compared to running the compiler in MVS batch or TSO. Any
overrides of the defaults by the metalc utility are noted in the DEFAULT category
for the option. As the compiler defaults can always be changed during installation,
you should always consult the compiler listing to verify the values passed to the
compiler. See “Using compiler listing” on page 155 for more information.

Summary of compiler options
Most compiler options have a positive and negative form. The negative form is the
positive with NO before it. For example, NOASM is the negative form of ASM.

Table 4 lists the compiler options in alphabetical order, their abbreviations, and the
defaults that are supplied by IBM. Suboptions inside square brackets are optional.

Note: For a description of the compiler options that can be specified with metalc,
type metalc without arguments to access the help file.

The Compile and IPA link columns, which are shown in Table 4, indicate where the
option is accepted by the compiler but this acceptance does not necessarily cause
an action; for example, IPA LINK accepts the MARGINS option but ignores it. This
acceptance also means that a diagnostic message is not generated. These options
are accepted regardless of whether they are for NOIPA or IPA(NOLINK).

Table 4. Compiler options, abbreviations, and IBM-supplied defaults

Compiler Option (Abbreviated Names are
underlined) IBM-supplied Default Compile

IPA
Link

More
Information

AGGRCOPY[(OVERLAP | NOOVERLAP)] NOAGGRC(NOOVERL) U U See detail

AGGREGATE | NOAGGREGATE NOAGG U U See detail

ANSIALIAS | NOANSIALIAS ANS U U See detail

ARCHITECTURE(n) ARCH(10) U U See detail

ARGPARSE | NOARGPARSE ARG U U See detail

ARMODE | NOARMODE NOARMODE U U See detail

ASM | NOASM ASM U U See detail

ASMDATASIZE(num) ASMDS(256) U U See detail

Chapter 2. Compiler options 11

Table 4. Compiler options, abbreviations, and IBM-supplied defaults (continued)

Compiler Option (Abbreviated Names are
underlined) IBM-supplied Default Compile

IPA
Link

More
Information

ASSERT(RESTRICT) | ASSERT(NORESTRICT) ASSERT(RESTRICT) U U See detail

BITFIELD(SIGNED|UNSIGNED) BITF(UNSIGNED) U U See detail

CHARS(SIGNED | UNSIGNED) CHARS(UNSIGNED) U U See detail

COMPACT | NOCOMPACT NOCOMPACT U U See detail

COMPRESS | NOCOMPRESS NOCOMPRESS U U See detail

CONVLIT[(subopts)] | NOCONVLIT[(subopts)] NOCONV (lBM-1047,
NOWCHAR)

U U See detail

CSECT([qualifier]) | NOCSECT([qualifier]) CSE U U See detail

DEBUG[(subopts)] | NODEBUG[(subopts)] NODEBUG U See detail

DEFINE(name1[= | =def1], name2[= |
=def2],...)

Note: No default user
definitions.

U U See detail

DIGRAPH | NODIGRAPH DIGR U U See detail

DSAUSER | NODSAUSER NODSAUSER U U See detail

ENUMSIZE(subopts) ENUM(SMALL) U U See detail

EPILOG(subopts) Note: The compiler generates
default epilog code for the
functions that do not have
user-supplied epilog code.

U U See detail

EVENTS[(filename)] | NOEVENTS NOEVENT U U See detail

EXPMAC | NOEXPMAC NOEXP U U See detail

FLAG(severity) | NOFLAG FL(I) U U See detail

FLOAT(subopts) FLOAT(IEEE, FOLD, NOMAF,
NORRM, AFP)

U U See detail

GOFF | NOGOFF NOGOFF U U See detail

HALT(num) HALT(16) U U See detail

HALTONMSG(msgno) | NOHALTONMSG NOHALTON U U See detail

HGPR[(subopt)] | NOHGPR HGPR(PRESERVE) U U See detail

HOT | NOHOT NOHOT U See detail

INCLUDE(file) | NOINCLUDE NOINCLUDE U U See detail

INFO[(subopts)] | NOINFO NOIN U U See detail

INITAUTO(number [,word]) | NOINITAUTO NOINITA U U See detail

INLINE | NOINLINE NOINLINE U U See detail

IPA[(subopts)] | NOIPA[(subopts)] NOIPA U U See detail

KEYWORD(name) | NOKEYWORD(name) All of the built-in keywords
defined in the C language
standard are reserved as
keywords.

U U See detail

LANGLVL(subopts) LANG(EXTENDED) U U See detail

LIST[(filename)] | NOLIST [(filename)] NOLIS U U See detail

LIBANSI | NOLIBANSI NOLIB U U See detail

LOCALE[(name)] | NOLOCALE NOLOC U U See detail

LONGNAME | NOLONGNAME NOLO U U See detail

12 User's Guide

Table 4. Compiler options, abbreviations, and IBM-supplied defaults (continued)

Compiler Option (Abbreviated Names are
underlined) IBM-supplied Default Compile

IPA
Link

More
Information

LP64 | ILP32 ILP32 U U See detail

LONGLONG | NOLONGLONG LONGLONG U U See detail

LSEARCH(subopts) | NOLSEARCH NOLSE U U See detail

MAKEDEP[(GCC | PPONLY)] Not applicable. U See detail

MARGINS(m,n) | NOMARGINS For fixed record format C
source files, the default is
MAR(1,72).

U U See detail

MAXMEM(size) | NOMAXMEM MAXM(2097152) U U See detail

MEMORY | NOMEMORY MEM U U See detail

METAL METAL U U See detail

NESTINC(num) | NONESTINC NEST(255) U U See detail

OE[(filename)] | NOOE[(filename)] NOOE U U See detail

OPTFILE[(filename)] | NOOPTFILE[(filename)] NOOPTF U U See detail

OPTIMIZE[(level)] | NOOPTIMIZE NOOPT U U See detail

PHASEID | NOPHASEID NOPHASEID U U See detail

PPONLY[(subopts)] | NOPPONLY[(subopts)] NOPP U U See detail

PREFETCH | NOPREFETCH PREFETCH U See detail

PROLOG(subopt) The compiler generates default
prolog code for the functions
that do not have user-supplied
prolog code.

U U See detail

RENT | NORENT NORENT U U See detail

RESERVED_REG(subopt) Note: No default user
definitions.

U U See detail

RESTRICT[(subopts)] | NORESTRICT NORESTRICT U U See detail

ROCONST | NOROCONST NOROC U U See detail

ROSTRING | NOROSTRING RO U U See detail

ROUND(subopt) ROUND(N) U U See detail

SEARCH(opt1,opt2,...) | NOSEARCH SEARCH(/usr/include/) U U See detail

SEQUENCE(m,n) | NOSEQUENCE For variable record format C
source files, the default is
NOSEQUENCE.

For fixed record format C
source files, the default is
SEQUENCE(73,80).

U U See detail

SERVICE(string) | NOSERVICE NOSERV U U See detail

SEVERITY(severity level(msg-no)) |
NOSEVERITY

NOSEVERITY U See detail

SHOWINC | NOSHOWINC NOSHOW U U See detail

SHOWMACROS[(subopts)] |
NOSHOWMACROS

NOSHOWM U See detail

SKIPSRC (SHOW | HIDE) SKIPS(SHOW) U U See detail

SOURCE[(filename)] | NOSOURCE[(filename)] NOSO U U See detail

Chapter 2. Compiler options 13

Table 4. Compiler options, abbreviations, and IBM-supplied defaults (continued)

Compiler Option (Abbreviated Names are
underlined) IBM-supplied Default Compile

IPA
Link

More
Information

SPLITLIST | NOSPLITLIST NOSPLITLIST U U See detail

SSCOMM | NOSSCOMM NOSS U U See detail

STRICT | NOSTRICT STRICT U U See detail

STRICT_INDUCTION |
NOSTRICT_INDUCTION

NOSTRICT_INDUC U U See detail

SUPPRESS(msg-no) | NOSUPPRESS(msg-no) NOSUPP U U See detail

SYSSTATE(subopts) SYSSTATE(NOASCENV,
OSREL(NONE))

U U See detail

TERMINAL | NOTERMINAL TERM U U See detail

UNDEFINE(name) No default. U U See detail

TUNE(n) TUN(10) U U See detail

UNROLL(subopts) UNROLL(AUTO) U U See detail

UPCONV | NOUPCONV NOUPC U U See detail

VECTOR | NOVECTOR NOVECTOR U U See detail

WARN64 | NOWARN64 NOWARN64 U U See detail

WSIZEOF| NOWSIZEOF NOWSIZEOF U U See detail

Compiler output options
The options in Table 5 control the type of file output the compiler produces, as
well as the locations of the output. These are the basic options that determine the
compiler components that will be invoked, the preprocessing, compilation,
assemble, and linking steps that will (or will not) be taken, and the kind of output
to be generated.

Table 5. Compiler output options

Option Description Compile IPA Link
More

Information

MAKEDEP Analyzes each source file to determine what
dependency it has on other files and places this
information into an output file.

U See detail

PPONLY Specifies that only the preprocessor is to be run
and not the compiler.

U U See detail

SHOWMACROS Emits macro definitions at the end of
compilation to preprocessed output.

U See detail

14 User's Guide

Compiler input options
The options in Table 6 specify the type and location of your source files.

Table 6. Compiler input options

Option Description Compile IPA Link
More

Information

INCLUDE Inserts an #include statement for each file
specified with the INCLUDE option before the
first line of the source file.

U See detail

LSEARCH Specifies the directories or data sets to be
searched for user include files.

U See detail

MARGINS Specifies, inclusively, the range of source
column numbers that will be compiled.

U See detail

NESTINC Specifies the number of nested include files to
be allowed in your source program.

U See detail

OE Specifies the rules used when searching for
files specified with #include directives.

U See detail

SEARCH Specifies the directories or data sets to be
searched for system include files.

U See detail

SEQUENCE Specifies the columns used for sequence
numbers.

U See detail

Language element control options
The options in Table 7 allow you to specify the characteristics of the source code.
You can also use these options to enforce or relax language restrictions and enable
or disable language extensions.

Table 7. Language element control options

Option Description Compile IPA Link
More

Information

ASM Enables embedded assembler source inside C
programs.

U See detail

DEFINE Defines a macro as in a #define preprocessor
directive.

U See detail

DIGRAPH Enables recognition of digraph key
combinations or keywords to represent
characters not found on some keyboards.

U See detail

KEYWORD Controls whether the specified name is treated
as a keyword or an identifier whenever it
appears in your source.

U See detail

LANGLVL Determines whether source code and compiler
options should be checked for conformance to
a specific language standard, or subset or
superset of a standard.

U See detail

LONGLONG Controls whether to allow the pre-C99 long
long integer types in your programs.

U See detail

SSCOMM Allows comments to be specified by two
slashes (//), which supports C++ style
comments in C code.

U See detail

Chapter 2. Compiler options 15

Table 7. Language element control options (continued)

Option Description Compile IPA Link
More

Information

UNDEFINE Undefines preprocessor macro names. U See detail

VECTOR Enables compiler support for vector data types
and operations.

U See detail

Object code control options
The options in Table 8 affect the characteristics of the object code generated by the
compiler.

Table 8. Object code control options

Option Description Compile IPA Link
More

Information

ARGPARSE Parses arguments provided on the invocation
line.

U U See detail

ARMODE Specifies that all functions in the C source file
will operate in access-register (AR) mode.

U See detail

ASMDATASIZE Provides the default data area size for the data
areas defined by user-supplied assembly
statements.

U See detail

COMPRESS Suppresses the generation of function names in
the function control block, thereby reducing
the size of your application's load module.

U U See detail

CSECT Instructs the compiler to generate CSECT
names in the output object module.

U U See detail

DSAUSER Requests a user field of the size of a pointer to
be reserved on the stack.

U See detail

EPILOG Enables you to provide your own function exit
code for all your functions that have extern
scope.

U See detail

GOFF Instructs the compiler to produce an object file
in the Generalized Object File Format (GOFF).

U U See detail

ILP32 Instructs the compiler to generate AMODE 31
code.

U U See detail

LOCALE Specifies the locale to be used by the compiler
as the current locale throughout the
compilation unit.

U U See detail

LONGNAME Provides support for external names of mixed
case and up to 1024 characters long.

U U See detail

LP64 Instructs the compiler to generate AMODE 64
code using the z/Architecture 64-bit
instructions.

U U See detail

METAL METAL is accepted and ignored to allow
interoperability with the z/OS XL C compiler.

U See detail

PROLOG Enables you to provide your own function
entry code for all your functions that have
extern scope.

U See detail

RENT Generates reentrant code. U U See detail

16 User's Guide

Table 8. Object code control options (continued)

Option Description Compile IPA Link
More

Information

RESERVED_REG Instructs the compiler not to use the specified
general purpose register (GPR) during the
compilation.

U See detail

ROCONST Specifies the storage location for constant
values.

U U See detail

ROSTRING Specifies the storage type for string literals. U U See detail

SYSSTATE Provides additional SYSSTATE macro
parameters to the SYSSTATE macro that is
generated by the compiler.

U U See detail

WSIZEOF Causes the sizeof operator to return the
widened size for function return types.

U U See detail

Floating-point and integer control options
Specifying the details of how your applications perform calculations can allow you
to take better advantage of your system's floating-point performance and precision,
including how to direct rounding. However, keep in mind that strictly adhering to
IEEE floating-point specifications can impact the performance of your application.
Using the options in Table 9, you can control trade-offs between floating-point
performance and adherence to IEEE standards.

The table also lists options that allow you to control the characteristics of integer
variables, values and types.

Table 9. Floating-point and integer control options

Option Description Compile IPA Link
More

Information

BITFIELD Specifies whether bit fields are signed or
unsigned.

U U See detail

CHARS Determines whether all variables of type char
are treated as either signed or unsigned.

U U See detail

ENUMSIZE Specifies the amount of storage occupied by
enumerations.

U U See detail

FLOAT Selects different strategies for speeding up or
improving the accuracy of floating-point
calculations.

U U See detail

ROUND Specifies the rounding mode for the compiler
to use when evaluating constant floating-point
expressions at compile time.

U U See detail

Error-checking and debugging options
You can use the options in Table 10 on page 18 to detect and correct problems in
your source code. In some cases, these options can alter your object code, increase
your compile time, or introduce runtime checking that can slow down the
execution of your application. The option descriptions indicate how extra checking
can impact performance.

Chapter 2. Compiler options 17

To control the amount and type of information you receive regarding the behavior
and performance of your application, consult the “Listings, messages, and compiler
information options” section.

Table 10. Error-checking and debugging options

Option Description Compile IPA Link
More

Information

DEBUG Instructs the compiler to generate debug
information.

U See detail

EVENTS Produces an event file that contains error
information and source file statistics.

U U See detail

HALT Stops compilation before producing any object,
executable, or assembler source files if the
maximum severity of compile-time messages
equals or exceeds the severity specified for this
option.

U U See detail

HALTONMSG Stops compilation before producing any object,
executable, or assembler source files if a
specified error message is generated.

U U See detail

INFO Produces groups of informational messages. U U See detail

INITAUTO Initializes automatic variables to a specific
value for debugging purposes.

U U See detail

SERVICE Places a string in the object module, which is
displayed in the traceback if the application
fails abnormally.

U U See detail

WARN64 Generates diagnostic messages, which enable
checking for possible data conversion problems
between 32-bit and 64-bit compiler modes.

U U See detail

Listings, messages, and compiler information options
The options in Table 11 allow you to control the listing file, as well as how and
when to display compiler messages. You can use these options in conjunction with
those in the “Error-checking and debugging options” on page 17 section to provide
a more robust overview of your application when checking for errors and
unexpected behavior.

Table 11. Listings, messages, and compiler information options

Option Description Compile IPA Link
More

Information

AGGREGATE Lists structures and unions, and their sizes. U U See detail

EXPMAC Lists all expanded macros in the source listing. U See detail

FLAG Limits the diagnostic messages to those of a
specified level or higher.

U U See detail

LIST Produces a compiler listing that includes a list
of options and the compiler version.

U U See detail

18 User's Guide

Table 11. Listings, messages, and compiler information options (continued)

Option Description Compile IPA Link
More

Information

PHASEID Causes each compiler component (phase) to
issue an informational message as each phase
begins execution, which assists you with
determining the maintenance level of each
compiler component (phase). This message
identifies the compiler phase module name,
product identification, and build level.

U U See detail

SEVERITY Changes the default severity for certain
messages that the user has specified, if these
messages are generated by the compiler.

U See detail

SHOWINC When used with the SOURCE option to generate
a listing file, selectively shows user or system
header files in the source section of the listing
file.

U See detail

SKIPSRC Controls whether or not source statements
skipped by the compiler are shown in the
listing, when the SOURCE option is in effect.

U See detail

SOURCE Produces a compiler listing file that includes
the source section of the listing.

U U See detail

SPLITLIST Enables the compiler to write the IPA Link
phase listing to multiple PDS members, PDSE
members, or z/OS UNIX files.

U See detail

SUPPRESS Prevents specific informational or warning
messages from being displayed or added to the
listing file, if one is generated.

U U See detail

TERMINAL Directs diagnostic messages to be displayed on
the terminal.

U U See detail

Optimization and tuning options
You can control the optimization and tuning process, which can improve the
performance of your application at run time, using the options in Table 12.
Remember that not all options benefit all applications. Trade-offs sometimes occur
between an increase in compile time, a reduction in debugging capability, and the
improvements that optimization can provide.

Table 12. Optimization and tuning options

Option Description Compile IPA Link More
Information

AGGRCOPY Enables destructive copy operations for
structures and unions, which can improve
performance.

U U See detail

ANSIALIAS Indicates to the compiler that the code strictly
follows the type-based aliasing rule in the ISO
C standard, and can therefore be compiled
with higher performance optimization of the
generated code.

U U See detail

ARCHITECTURE Specifies the machine architecture for which
the executable program instructions are to be
generated.

U U See detail

Chapter 2. Compiler options 19

Table 12. Optimization and tuning options (continued)

ASSERT(RESTRICT) Enables optimizations for restrict qualified
pointers.

U U See detail

COMPACT Avoids optimizations that increase object file
size.

U U See detail

HGPR Enables the compiler to exploit 64-bit General
Purpose Registers (GPRs) in 32-bit programs
targeting z/Architecture hardware.

U U See detail

HOT Performs high-order loop analysis and
transformations (HOT) during optimization.

U See detail

INLINE Attempts to inline functions instead of
generating calls to those functions, for
improved performance.

U U See detail

IPA Enables or customizes a class of optimizations
known as interprocedural analysis (IPA).

U U See detail

LIBANSI Indicates whether or not functions with the
name of an ANSI C library function are in fact
ANSI C library functions and behave as
described in the ANSI standard.

U U See detail

MAXMEM Limits the amount of memory used for local
tables, and that the compiler allocates while
performing specific, memory-intensive
optimizations, to the specified number of
kilobytes.

U U See detail

OPTIMIZE Specifies whether to optimize code during
compilation and, if so, at which level.

U U See detail

PREFETCH Inserts prefetch instructions automatically
where there are opportunities to improve code
performance.

U See detail

RESTRICT Indicates to the compiler that all pointer
parameters in some or all functions are
disjoint.

U U See detail

STRICT Used to prevent optimizations done by default
at optimization levels OPT(3), and, optionally
at OPT(2), from re-ordering instructions that
could introduce rounding errors.

U U See detail

STRICT_INDUCTION Prevents the compiler from performing
induction (loop counter) variable
optimizations. These optimizations may be
unsafe (may alter the semantics of your
program) when there are integer overflow
operations involving the induction variables.

U U See detail

TUNE Tunes instruction selection, scheduling, and
other implementation-dependent performance
enhancements for a specific implementation of
a hardware architecture.

U U See detail

UNROLL Controls loop unrolling, for improved
performance.

U U See detail

20 User's Guide

Portability and migration options
The options in Table 13 can help you maintain application behavior compatibility
on past, current, and future hardware, operating systems and compilers, or help
move your applications to the Enterprise Metal C for z/OS compiler with minimal
change.

Table 13. Portability and migration options

Option Description Compile IPA Link
More

Information

CONVLIT Turns on string literal code page conversion. U See detail

UPCONV Specifies whether the unsigned specification is
preserved when integral promotions are
performed.

U U See detail

Compiler customization options
The options in Table 14 allow you to specify alternate locations for configuration
files, and internal compiler operation. You should only need to use these options in
specialized installation or testing scenarios.

Table 14. Compiler customization options

Option Description Compile IPA Link
More

Information

MEMORY Improves compile-time performance by using a
memory file in place of a temporary work file,
if possible.

U U See detail

OPTFILE Specifies where the compiler should look for
additional compiler options.

U U See detail

Description of compiler options
The following sections describe the compiler options and their usage. Compiler
options are listed alphabetically.

For each option, the following information is provided:

Category
The functional category to which the option belongs is listed here.

Pragma equivalent
Many compiler options allow you to use an equivalent pragma directive to
apply the option's functionality within the source code, limiting the scope
of the option's application to a single source file, or even selected sections
of code. Where an option supports the #pragma options (option_name)
and/or #pragma name form of the directive, this is indicated.

Purpose
This section provides a brief description of the effect of the option (and
equivalent pragmas), and why you might want to use it.

Syntax
This section provides the syntax for the option. The abbreviation of the
option is used in the syntax diagram. You can also specify the option using
its full name.

Chapter 2. Compiler options 21

Defaults
In most cases, the default option setting is clearly indicated in the syntax
diagram. However, for many options, there are multiple default settings,
depending on other compiler options in effect. This section indicates the
different defaults that may apply.

Parameters
This section describes the suboptions that are available for the option.

Usage This section describes any rules or usage considerations you should be
aware of when using the option. These can include restrictions on the
option's applicability, valid placement of pragma directives, precedence
rules for multiple option specifications, and so on.

IPA effects
Where appropriate, provides information on the effect of the option during
the IPA compile and/or IPA link steps.

Predefined macros
Many compiler options set macros that are protected (that is, cannot be
undefined or redefined by the user). Where applicable, any macros that are
predefined by the option, and the values to which they are defined, are
listed in this section.

Examples
Where appropriate, examples of the command-line syntax are provided in
this section.

Related information
Where appropriate, provides cross-references to related information.

AGGRCOPY
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Enables destructive copy operations for structures and unions, which can improve
performance.

Syntax

►►
NOOVERL

AGGRC (OVERL) ►◄

Defaults

AGGRCOPY(NOOVERLAP)

Parameters

OVERLAP
Specifies that the source and destination in a structure assignment might

22 User's Guide

overlap in memory. Programs that do not comply to the ANSI C standard as it
pertains to non-overlap of source and destination assignment may need to be
compiled with the OVERLAP suboption.

NOOVERLAP
Instructs the compiler to assume that the source and destination for structure
and union assignments do not overlap. This assumption lets the compiler
generate faster code.

Usage

The AGGRCOPY option instructs the compiler on whether or not the source and
destination assignments for structures can overlap. They cannot overlap according
to ISO Standard C rules. For example, in the assignment a = b;, where a and b are
structs, a is the destination and b is the source.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

The IPA compile step generates information for the IPA link step.

The IPA link step accepts the AGGRCOPY option, but ignores it.

The IPA link step merges and optimizes the application code, and then divides it
into sections for code generation. Each of these sections is a partition. The IPA link
step uses information from the IPA compile step to determine if a subprogram can
be placed in a particular partition. Only compatible subprograms are included in a
given partition.

The value of the AGGRCOPY option for a partition is set to the value of the first
subprogram that is placed in the partition. During IPA inlining, subprograms with
different AGGRCOPY settings may be combined in the same partition. When this
occurs, the resulting partition is always set to AGGRCOPY(OVERLAP).

Predefined macros

None.

AGGREGATE | NOAGGREGATE
Category

Listings, messages, and compiler information

Pragma equivalent

#pragma options (aggregate), #pragma options (noaggregate)

Purpose

Lists structures and unions, and their sizes.

Chapter 2. Compiler options 23

Syntax

►►
NOAGGREGATE
AGGREGATE

OFFSETDEC
(OFFSETHEX)

►◄

Defaults

NOAGGREGATE

For AGGREGATE, the default is OFFSETDEC.

Parameters

OFFSETDEC
Lists the structure member offsets in decimal format.

OFFSETHEX
Lists the structure member offsets in hexadecimal format.

Usage

Specifying AGGREGATE with no suboption is equivalent to specifying
AGGREGATE(OFFSETDEC).

When the AGGREGATE compiler option is in effect, the compiler includes a layout
of all struct or union types in the compiler listing.

Depending on the struct or union declaration, the maps are generated as follows:
v If the typedef name refers to a struct or union, one map is generated for the

struct or union for which the typedef name refers to. If the typedef name can be
qualified with the _Packed keyword, then a packed layout of the struct or union
is generated as well. Each layout map contains the offset and lengths of the
structure members and the union members. The layout map is identified by the
struct/union tag name (if one exists) and by the typedef names.

v If the struct or union declaration has a tag, two maps are created: one contains
the unpacked layout, and the other contains the packed layout. The layout map
is identified by the struct/union tag name.

v If the struct or union declaration does not have a tag, one map is generated for
the struct or union declared. The layout map is identified by the variable name
that is specified on the struct or union declaration.

Predefined macros

None.

ANSIALIAS | NOANSIALIAS
Category

Optimization and tuning

Pragma equivalent

#pragma options (ansialias), #pragma options (noansialias)

24 User's Guide

Purpose

Indicates to the compiler that the code strictly follows the type-based aliasing rule
in the ISO C standard, and can therefore be compiled with higher performance
optimization of the generated code.

When ANSIALIAS is in effect, you are making a promise to the compiler that your
source code obeys the constraints in the ISO standard. On the basis of using this
compiler option, the compiler front end passes aliasing information to the
optimizer, which performs optimization accordingly.

When NOANSIALIAS is in effect, the optimizer assumes that a given pointer of a
given type can point to an external object or any object whose address is taken,
regardless of type. This assumption creates a larger aliasing set at the expense of
performance optimization.

Syntax

►►
ANS
NOANS ►◄

Defaults

ANSIALIAS

Usage

When type-based aliasing is used during optimization, the optimizer assumes that
pointers can only be used to access objects of the same type.

Type-based aliasing improves optimization in the following ways.
v It provides precise knowledge of what pointers can and cannot point at.
v It allows more loads to memory to be moved up and stores to memory moved

down past each other, which allows the delays that normally occur in the
original written sequence of statements to be overlapped with other tasks. These
re-arrangements in the sequence of execution increase parallelism, which is
desirable for optimization.

v It allows the removal of some loads and stores that otherwise might be needed
in case those values were accessed by unknown pointers.

v It allows more identical calculations to be recognized ("commoning").
v It allows more calculations that do not depend on values modified in a loop to

be moved out of the loop ("code motion").
v It allows better optimization of parameter usage in inlined functions.

Simplified, the rule is that you cannot safely dereference a pointer that has been
cast to a type that is not closely related to the type of what it points at. The ISO C
standard defines the closely related types.

The following are not subject to type-based aliasing:
v Types that differ only in reference to whether they are signed or unsigned. For

example, a pointer to a signed int can point to an unsigned int.
v Character pointer types (char, unsigned char).

Chapter 2. Compiler options 25

v Types that differ only in their const or volatile qualification. For example, a
pointer to a const int can point to an int.

Enterprise Metal C for z/OS compiler often exposes type-based aliasing violations
that other compilers do not.

In addition to the specific optimizations to the lines of source code that can be
obtained by compiling with the ANSIALIAS compiler option, other benefits and
advantages, which are at the program level, are described below:
v It reduces the time and memory needed for the compiler to optimize programs.
v It allows a program with a few coding errors to compile with optimization, so

that a relatively small percentage of incorrect code does not prevent the
optimized compilation of an entire program.

v It positively affects the long-term maintainability of a program by supporting
ISO-compliant code.

It is important to remember that even though a program compiles, its source code
may not be completely correct. When you weigh tradeoffs in a project, the
short-term expedience of getting a successful compilation by forgoing performance
optimization should be considered with awareness that you may be nurturing an
incorrect program. The performance penalties that exist today could worsen as the
compilers that base their optimization on strict adherence to ISO rules evolve in
their ability to handle increased parallelism.

The ANSIALIAS compiler option only takes effect if the OPTIMIZE option is in
effect.

If you specify LANGLVL(COMMONC), the ANSIALIAS option is automatically
turned off. If you want ANSIALIAS turned on, you must explicitly specify it.
Using LANGLVL(COMMONC) and ANSIALIAS together may have undesirable
effects on your code at a high optimization level. See “LANGLVL” on page 79 for
more information on LANGLVL(COMMONC).

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

Although type-based aliasing does not apply to the volatile and const qualifiers,
these qualifiers are still subject to other semantic restrictions. For example, casting
away a const qualifier might lead to an error at run time.

IPA effects

If the ANSIALIAS option is specified, then the IPA link step phase will take
advantage of the knowledge that the program will adhere to the standard C
aliasing rules in order to improve its variable aliasing calculations.

Predefined macros

None.

Examples

The following example executes as expected when compiled unoptimized or with
the NOANSIALIAS option; it successfully compiles optimized with ANSIALIAS,
but does not necessarily execute as expected. On non-IBM compilers, the following
code may execute properly, even though it is incorrect.

26 User's Guide

1 extern int y = 7.;
2
3 void main() {
4 float x;
5 int i;
6 x = y;
7 i = *(int *) &x;
8 printf("i=%d. x=%f.\n", i, x);
9 }

In this example, the value in object x of type float has its stored value accessed
via the expression * (int *) &x. The access to the stored value is done by the *
operator, operating on the expression (int *) &x. The type of that expression is
(int *), which is not covered by the list of valid ways to access the value in the
ISO standard, so the program violates the standard.

When ANSIALIAS (the default) is in effect, the compiler front end passes aliasing
information to the optimizer that, in this case, an object of type float could not
possibly be pointed to by an (int *) pointer (that is, that they could not be aliases
for the same storage). The optimizer performs optimization accordingly. When it
compares the instruction that stores into x and the instruction that loads out of
*(int *), it believes it is safe to put them in either order. Doing the load before the
store will make the program run faster, so it interchanges them. The program
becomes equivalent to:
1 extern int y = 7.;
2
3 void main() {
4 float x;
5 int i;
6 int temp;
7 temp = *(int *) &x; /* uninitialized */
8 x = y;
9 i = temp;
10 printf("i=%d. x=%f.\n", i, x);
9 }

The value stored into variable i is the old value of x, before it was initialized,
instead of the new value that was intended. IBM compilers apply some
optimizations more aggressively than some other compilers so correctness is more
important.

ARCHITECTURE
Category

Optimization and tuning

Pragma equivalent

#pragma options (architecture)

Purpose

Specifies the machine architecture for which the executable program instructions
are to be generated.

Chapter 2. Compiler options 27

Syntax

►► ARCH (n) ►◄

Defaults

ARCH(10)

Parameters

n Specifies the group to which a model number belongs.

The following groups of models are supported:

0 Produces code that is executable on all models.

1 Produces code that uses instructions available on the following system
machine models:
v 9021-520, 9021-640, 9021-660, 9021-740, 9021-820, 9021-860, and 9021-900
v 9021-xx1 and 9021-xx2
v 9672-Rx1, 9672-Rx2 (G1), 9672-Exx, and 9672-Pxx

Specifically, these ARCH(1) machines and their follow-ons add the C
Logical String Assist hardware instructions. These instructions are
exploited by the compiler, when practical, for a faster and more compact
implementation of some functions, for example, strcmp().

2 Produces code that uses instructions available on the following system
machine models:
v 9672-Rx3 (G2), 9672-Rx4 (G3), 9672-Rx5 (G4), and 2003

Specifically, these ARCH(2) machines and their follow-ons add the Branch
Relative instruction (Branch Relative and Save - BRAS), and the halfword
Immediate instruction set (for example, Add Halfword Immediate - AHI)
which may be exploited by the compiler for faster processing.

3 Produces code that uses instructions available on the 9672-xx6 (G5),
9672-xx7 (G6), and follow-on models.

Specifically, these ARCH(3) machines and their follow-ons add a set of
facilities for IEEE floating-point representation, as well as 12 additional
floating-point registers and some new floating-point support instructions
that may be exploited by the compiler.

Note that ARCH(3) is required for execution of a program that specifies the
FLOAT(IEEE) compiler option. However, if the program is executed on a
physical processor that does not actually provide these ARCH(3) facilities,
any program check (operation or specification exception), resulting from an
attempt to use features associated with IEEE floating point or the
additional floating point registers, will be intercepted by the underlying
operating system, and simulated by software. There will be a significant
performance degradation for the simulation.

4 Produces code that uses instructions available on the 2064-xxx (z900) and
2066-xxx (z800) models in ESA/390 mode.

Specifically, the following instructions are used for long long operations:
v 32-bit Add-With-Carry (ALC, ALCR) for long long addition (rather than

requiring a branch sequence)

28 User's Guide

v 32-bit Subtract-With-Borrow (SLB, SLBR) for long long subtraction
(rather than requiring a branch sequence)

v Inline sequence with 32-bit Multiply-Logical (ML, MLR) for long long
multiplication (rather than calling @@MULI64)

5 Produces code that uses instructions available on the 2064-xxx (z900) and
2066-xxx (z800) models in z/Architecture mode.

Specifically, ARCH(5) is the minimum requirement for execution of a
program in 64-bit mode. If you explicitly set ARCH to a lower level, the
compiler will issue a warning message and ignore your setting. ARCH(5)
specifies the target machine architecture and the application can be either
31-bit or 64-bit.

6 Produces code that uses instructions available on the 2084-xxx (z990) and
2086-xxx (z890) models in z/Architecture mode.

Specifically, these ARCH(6) machines and their follow-ons add the
long-displacement facility. For further information on the
long-displacement facility, refer to z/Architecture Principles of Operation.

7 Produces code that uses instructions available on the 2094-xxx (IBM System
z9® Business Class) and 2096-xxx (IBM System z9 Business Class) models
in z/Architecture mode.

Specifically, these ARCH(7) machines and their follow-ons add instructions
supported by the extended-immediate facility, which may be exploited by
the compiler. For further information on these facilities, refer to
z/Architecture Principles of Operation.

8 Produces code that uses instructions available on the 2097-xxx (IBM System
z10® Enterprise Class) and 2098-xxx (IBM System z10 Business Class)
models in z/Architecture mode.

Specifically, these ARCH(8) machines and their follow-ons add instructions
supported by the general instruction extensions facility, which may be
exploited by the compiler. For further information on these facilities, refer
to z/Architecture Principles of Operation.

9 Produces code that uses instructions available on the 2817-xxx (IBM
zEnterprise® 196 (z196)) and 2818-xxx (IBM zEnterprise 114 (z114)) models
in z/Architecture mode.

Specifically, these ARCH(9) machines and their follow-ons add instructions
supported by the high-word facility, the interlocked-access facility, the
load/store-on-condition facility, the distinct-operands-facility and the
population-count facility. For further information about these facilities, see
z/Architecture Principles of Operation.

10 Is the default value. Produces code that uses instructions available on the
2827-xxx (IBM zEnterprise EC12 (zEC12)) and 2828-xxx (IBM zEnterprise
BC12 (zBC12)) models in z/Architecture mode.

Specifically, these ARCH(10) machines and their follow-ons add
instructions supported by the execution-hint facility, the load-and-trap
facility, the miscellaneous-instruction-extension facility, and the
transactional-execution facility. For further information about these
facilities, see z/Architecture Principles of Operation.

11 Produces code that uses instructions available on the 2964-xxx (IBM z13™

(z13)) and the 2965-xxx (IBM z13s (z13s)) models in z/Architecture mode.

Chapter 2. Compiler options 29

Specifically, these ARCH(11) machines and their follow-ons add
instructions supported by the vector facility, the decimal floating point
packed conversion facility, and the load/store-on-condition facility 2. The
VECTOR option is required for the compiler to use the vector facility. For
further information about these facilities, see z/Architecture Principles of
Operation.

12 Produces code that uses instructions available on the 3906-xxx (IBM z14)
and 3907-xxx (IBM z14 ZR1) models in z/Architecture mode.

Specifically, these ARCH(12) machines and their follow-ons add
instructions supported by the vector enhancement facility 1, the vector
packed decimal facility, and the miscellaneous instruction extension facility
2. The VECTOR option is required for the compiler to use the vector
enhancement facility 1 and vector packed decimal facility. For further
information about these facilities, see z/Architecture Principles of Operation.

Usage

When ARCHITECTURE is in effect, the compiler selects the instruction set
available during the code generation of your program based on the specified
machine architecture.

Specifying a higher ARCH level generates code that uses newer and faster
instructions instead of the sequences of common instructions.

Notes:

1. Your application will not run on a lower architecture processor than what you
specified using the ARCH option. Use the ARCH level that matches the lowest
machine architecture where your program will run.

2. Code that is compiled at ARCH(1) runs on machines in the ARCH(1) group
and later machines, including those in the ARCH(2) and ARCH(3) groups. It
may not run on earlier machines. Code that is compiled at ARCH(2) may not
run on ARCH(1) or earlier machines. Code that is compiled at ARCH(3) may
not run on ARCH(2) or earlier machines.

3. For the system machine models, x indicates any value. For example, 9672-Rx4
means 9672-RA4 through to 9672-RX4, not just 9672-RX4.

If you specify a group that does not exist or is not supported, the compiler uses
the default, and issues a warning message.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

The IPA compile step generates information for the IPA link step.

The IPA link step merges and optimizes the application code, and then divides it
into sections for code generation. Each of these sections is a partition.

If you specify the ARCH option on the IPA link step, it uses the value of that
option for all partitions. The IPA link step Prolog and all Partition Map sections of
the IPA link step listing display that value.

30 User's Guide

If you do not specify the option on the IPA link step, the value used for a partition
depends on the value that you specified for the IPA compile step for each
compilation unit that provided code for that partition. If you specified the same
value for each compilation unit, the IPA link step uses that value. If you specified
different values, the IPA link step uses the lowest level of ARCH.

The level of ARCH for a partition determines the level of TUNE for the partition.

The Partition Map section of the IPA link step listing, and the object module
display the final option value for each partition. If you override this option on the
IPA link step, the Prolog section of the IPA link step listing displays the value of
the option.

The Compiler Options Map section of the IPA link step listing displays the option
value that you specified for each IPA object file during the IPA compile step.

Predefined macros

__ARCH__ is predefined to the integer value of the ARCH compiler option.

Related information
v Use the ARCH option with the TUNE option. For more information about the

interaction between ARCH and TUNE, see “TUNE” on page 145.
v “VECTOR | NOVECTOR” on page 151

ARGPARSE | NOARGPARSE
Category

Object code control

Pragma equivalent

None.

Purpose

Parses arguments provided on the invocation line.

When ARGPARSE is in effect, arguments supplied to your program on the
invocation line are parsed and passed to the main() routine in the C argument
format, commonly argc and argv. argc contains the argument count, and argv
contains the tokens after the command processor has parsed the string.

When NOARGPARSE is in effect, arguments on the invocation line are not parsed,
argc has a value of 2, and argv contains a pointer to the string.

Syntax

►►
ARG
NOARG ►◄

Defaults

ARGPARSE

Chapter 2. Compiler options 31

Usage

Note: NOARGPARSE is ignored for the following programs:
v Programs that use spawn() or exec().
v Programs that are started by the z/OS UNIX System Services shell or by the

BPXBATCH utility.
v METAL programs that are dubbed.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

The IPA compile step generates information for the IPA link step.

If you specify this option for both the IPA Compile and the IPA link steps, the
setting on the IPA link step overrides the setting on the IPA compile step. This
applies whether you use ARGPARSE and NOARGPARSE as compiler options, or
specify them using the #pragma runopts directive on the IPA compile step.

If you specified ARGPARSE on the IPA compile step, you do not need to specify it
again on the IPA link step to affect that step. The IPA link step uses the
information generated for the compilation unit that contains the main() function. If
it cannot find a compilation unit that contains main(), it uses the information
generated by the first compilation unit that it finds.

Predefined macros

None.

ARMODE | NOARMODE
Category

Object code control

Pragma equivalent

None.

Purpose

Specifies that all functions in the C source file will operate in access-register (AR)
mode.

When ARMODE is in effect, all functions in the compilation unit will be compiled
in AR mode. AR mode functions can access data stored in additional data spaces
supported by IBM Z®.

To override the effect of the ARMODE option and selectively re-set particular
functions to be in non-AR mode (or primary address space control mode), use
__attribute__((noarmode)). For more information on this attribute, see The
armode | noarmode type attribute in Enterprise Metal C for z/OS Language Reference
and Enterprise Metal C for z/OS Programming Guide and Reference.

32 User's Guide

When NOARMODE is in effect, functions are not in AR mode unless
__attribute__((armode)) is specifically specified for the functions.

Syntax

►►
NOARMODE
ARMODE ►◄

Defaults

NOARMODE

Usage

If the ARMODE compiler option is specified, all functions in the compilation unit
will be compiled in AR mode.

Note: If the armode attribute is specified on a function in a compilation unit, it
overrides the compiler option.

AR mode enables a program to manipulate large amounts of data in memory by
using __far pointers. This means that a program working with a large table, for
example, would not need to use temporary disk files to move the data in and out
of disk storage. It also means that program logic can be less complicated, easier to
maintain, and less error prone. Currently, only assembler can make use of AR
Mode directly.

Predefined macros

None.

Related information

For more information on __far pointers, see Enterprise Metal C for z/OS Language
Reference.

ASM | NOASM
Category

Language element control

Pragma equivalent

None.

Purpose

Enables inlined assembly code inside C programs.

Syntax

►►
ASM
NOASM ►◄

Chapter 2. Compiler options 33

Default

ASM

Usage

Specify the ASM compiler option to instruct the compiler to recognize the __asm
and __asm__ keywords (as well as the asm keyword).

If the NOASM option is in effect, any __asm or __asm__ statements will be treated
as identifiers.

The ASM option implies the KEYWORD(asm) option.

When compiling programs with inlined assembly code, you must be aware of the
following constraints to the source code:
v User labels in inlined assembly code are not supported by the compiler. If the

labels are necessary, you must ensure that each label is uniquely defined because
the inlined assembly code might get duplicated by various optimization phases,
and therefore user labels might be defined multiple times when they are
presented to the assembler.

v HLASM symbols within another asm block are not supported.
v If an asm statement is used to define data, it cannot contain assembly

instructions for other purposes.
v Only asm statements that are used to define data can exist in global scope.
v Each assembly statement can define only one variable.
v The symbol used in the assembly statement must be unique within the scope of

the source file and be valid according to the assembler's requirements.
v Referencing an external symbol directly without going through the operand list

is not supported.
v Using registers that are reserved (for example, killing a register used by the

linkage) is not supported.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

The ASM option needs to be specified again in the IPA link step.

Predefined macros

__IBM_ASM_SUPPORT is predefined to 1 if ASM is specified.

Related information
v Inline assembly statements (IBM extension) in Enterprise Metal C for z/OS

Language Reference

ASMDATASIZE
Category

Object code control

34 User's Guide

Pragma equivalent

None.

Purpose

Provides the default data area size for the data areas defined by user-supplied
assembly statements.

Syntax

►► ASMDS (num) ►◄

Defaults

ASMDATASIZE(256)

Parameters

num
It is a positive integer number. The default value is 256.

IPA effects

The ASMDATASIZE option is ignored in the IPA link step. The IPA link step uses
the data area size from the IPA compile step.

ASSERT(RESTRICT) | ASSERT(NORESTRICT)
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Enables optimizations for restrict qualified pointers.

Syntax

►►
RESTRICT

ASSERT (NORESTRICT) ►◄

Defaults

ASSERT(RESTRICT)

Parameters

RESTRICT
Optimizations based on restrict qualified pointers are enabled.

Chapter 2. Compiler options 35

NORESTRICT
Optimizations based on restrict qualified pointers are disabled.

Usage

Restrict qualified pointers were introduced in the C99 Standard and provide
exclusive initial access to the object that they point to. This means that two restrict
qualified pointers, declared in the same scope, designate distinct objects and thus
should not alias each other (in other words, they are disjoint). The compiler can
use this aliasing in optimizations that may lead to additional performance gains.

Optimizations based on restrict qualified pointers will occur unless the user
explicitly disables them with the option ASSERT(NORESTRICT).

ASSERT(RESTRICT) does not control whether the keyword restrict is a valid
qualifier or not. Syntax checking of the restrict qualifier is controlled by the
language level or KEYWORD option.

You are responsible for ensuring that if a restrict pointer p references an object A,
then within the scope of p, only expressions based on the value of p are used to
access A. A violation of this rule is not diagnosed by the compiler and may result
in incorrect results. This rule only applies to ASSERT(RESTRICT).

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

Predefined macros

None.

Related information

For more information on related compiler options, see:
v “LANGLVL” on page 79
v “KEYWORD | NOKEYWORD” on page 78

BITFIELD(SIGNED) | BITFIELD(UNSIGNED)
Category

Floating-point and integer control

Pragma equivalent

None.

Purpose

Specifies whether bit fields are signed or unsigned.

Syntax

►►
UNSIGNED

BITFIELD (SIGNED) ►◄

36 User's Guide

Defaults

BITFIELD(UNSIGNED)

Parameters

SIGNED
Bit fields are signed.

UNSIGNED
Bit fields are unsigned.

Usage

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

Predefined macros

None.

CHARS(SIGNED) | CHARS(UNSIGNED)
Category

Floating-point and integer control

Pragma equivalent

#pragma chars

Purpose

Determines whether all variables of type char are treated as either signed or
unsigned.

Syntax

►►
UNSIGNED

CHARS (SIGNED) ►◄

Defaults

CHARS(UNSIGNED)

Parameters

UNSIGNED
Variables defined as char are treated as unsigned char.

SIGNED
Variables defined as char are treated as signed char.

Usage

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

Chapter 2. Compiler options 37

Predefined macros
v _CHAR_SIGNED is predefined to 1 when the CHARS(SIGNED) compiler option

is in effect; otherwise it is undefined.
v _CHAR_UNSIGNED is predefined to 1 when the CHARS(UNSIGNED) compiler

option is in effect; otherwise it is undefined.

COMPACT | NOCOMPACT
Category

Optimization and tuning

Pragma equivalent

#pragma option_override(subprogram_name, "OPT(COMPACT)")

Purpose

Avoids optimizations that increase object file size.

When the COMPACT option is in effect, the compiler favors those optimizations
that tend to limit object file size.

When the NOCOMPACT option is in effect, the compiler might use optimizations
that result in an increased object file size.

Syntax

►►
NOCOMPACT
COMPACT ►◄

Defaults

NOCOMPACT

Usage

During optimizations that are performed as part of code generation, for both
NOIPA and IPA, choices must be made between those optimizations that tend to
result in faster but larger code and those that tend to result in smaller but slower
code. The COMPACT option influences these choices.

Because of the interaction between various optimizations, code that is compiled
with the COMPACT option might not always generate smaller code and data.

When COMPACT is specified, as examples, it has the following effects:
v Not all subprograms are inlined. To determine the final status of inlining,

generate and check the inline report.
v The compiler might not generate inline code for some built-in versions of the C

library and the Metal C runtime library functions.

To evaluate the use of the COMPACT option for your application:
v Compare the size of the objects generated with COMPACT and NOCOMPACT
v Compare the size of the modules generated with COMPACT and NOCOMPACT

38 User's Guide

v Compare the execution time of a representative workload with COMPACT and
NOCOMPACT

If the objects and modules are smaller with an acceptable change in execution time,
then you can consider the benefit of using COMPACT.

As new optimizations are added to the compiler, the behavior of the COMPACT
option might change. You should reevaluate the use of this option for each new
release of the compiler and when you change the application code.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

During a compilation with IPA Compile-time optimizations active, any
subprogram-specific COMPACT option that is specified by #pragma
option_override(subprogram_name, "OPT(COMPACT)") directives will be retained.

The IPA compile step generates information for the IPA link step.

If you specify the COMPACT option for the IPA link step, it sets the compilation
unit values of the COMPACT option that you specify. The IPA link step Prolog
listing section will display the value of this option.

If you do not specify COMPACT option in the IPA link step, the setting from the
IPA compile step for each compilation unit will be used.

In either case, subprogram-specific COMPACT options will be retained.

The IPA link step merges and optimizes your application code, and then divides it
into sections for code generation. Each of these sections is a partition. The IPA link
step uses information from the IPA compile step to determine if a subprogram can
be placed in a particular partition. Only compatible subprograms are included in a
given partition. Compatible subprograms have the same COMPACT setting.

The COMPACT setting for a partition is set to the specification of the first
subprogram that is placed in the partition. Subprograms that follow are placed in
partitions that have the same COMPACT setting. A NOCOMPACT subprogram is
placed in a NOCOMPACT partition, and a COMPACT subprogram is placed in a
COMPACT partition.

The option value that you specified for each IPA object file on the IPA compile step
appears in the IPA link step Compiler Options Map listing section.

The Partition Map sections of the IPA link step listing and the object module END
information section display the value of the COMPACT option. The Partition Map
also displays any subprogram-specific COMPACT values.

Predefined macros

None.

Chapter 2. Compiler options 39

COMPRESS | NOCOMPRESS
Category

Object code control

Pragma equivalent

None.

Purpose

Suppresses the generation of function names in the function control block, thereby
reducing the size of your application's load module.

Syntax

►►
NOCOMPRESS
COMPRESS ►◄

Defaults

NOCOMPRESS

Usage

Function names are used by the dump service to provide you with meaningful
diagnostic information when your program encounters a fatal program error.
Without these function names, the reports generated by these services and tools
may not be complete.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

The IPA compile step generates information for the IPA link step.

If you specify the COMPRESS option for the IPA link step, it uses the value of the
option that you specify. The IPA link step Prolog listing section will display the
value of the option that you specify.

If you do not specify COMPRESS option in the IPA link step, the setting from the
IPA compile step will be used.

The IPA link step merges and optimizes your application code, and then divides it
into sections for code generation. Each of these sections is a partition. The IPA link
step uses information from the IPA compile step to determine if a subprogram can
be placed in a particular partition. Only compatible subprograms are included in a
given partition. Compatible subprograms have the same COMPRESS setting.

The COMPRESS setting for a partition is set to the specification of the first
subprogram that is placed in the partition. Subprograms that follow are placed in
partitions that have the same COMPRESS setting. A NOCOMPRESS mode

40 User's Guide

subprogram is placed in a NOCOMPRESS partition, and a COMPRESS mode
subprogram is placed in a COMPRESS partition.

The option value that you specified for each IPA object file on the IPA compile step
appears in the IPA link step Compiler Options Map listing section.

The Partition Map sections of the IPA link step listing and the object module END
information section display the value of the COMPRESS option.

Predefined macros

None.

Related information

For more information on related compiler options, see:
v “DEBUG | NODEBUG” on page 46

CONVLIT | NOCONVLIT
Category

Portability and migration

Pragma equivalent

#pragma convlit

Purpose

Turns on string literal code page conversion.

When the CONVLIT option is in effect, the compiler changes the assumed code
page for character and string literals within the compilation unit.

When the NOCONVLIT option is in effect, the default code page, or the code page
specified by the LOCALE option is used.

Syntax

►►
NOCONV
CONV

, NOWCHAR
()

codepage , WCHAR
, UNICODE

►◄

Defaults

NOCONVLIT(, NOWCHAR)

Parameters

codepage
You can use an optional suboption to specify the code page that you want to
use for string literals.

Chapter 2. Compiler options 41

NOWCHAR
The default is NOWCHAR. Only wide character constants and string literals
made up of single byte character set (SBCS) characters are converted. If there
are any shift-out (SO) and shift-in (SI) characters in the literal, the compilation
will end with an error message.

WCHAR
Instructs the compiler to change the code page for wide character constants
and string literals declared with the L'' or L"" prefix.

UNICODE
The compiler interprets the CONVLIT(, UNICODE) suboption as a request to
convert the wide string literals and wide character constants (wchar_t) to
Unicode (UCS-2) regardless of the code page used for conversion of string
literals and character constants (char). The conversion is supported for wide
string literals and wide character constants that are coded using characters
from the basic character set defined by the Programming languages - C (ISO/IEC
9899:1999) standard. The behavior is undefined if wide string literals and wide
character constants are coded using characters outside the basic character set.

Usage

The CONVLIT option affects all the source files that are processed within a
compilation unit, including user header files and system header files. All string
literals and character constants within a compilation unit are converted to the
specified codepage unless you use #pragma convlit(suspend) and #pragma
convlit(resume) to exclude sections of code from conversion.

The CONVLIT option only affects string literals within the compilation unit. The
following determines the code page that the program uses:
v If you specified a LOCALE, the remainder of the program will be in the code

page that you specified with the LOCALE option.
v If you specify the CONVLIT option with empty sub option list, CONVLIT() or

-qconvlit=, the compiler preserves any previous settings of the suboptions. It
will not use the default code page, or the code page specified by the LOCALE
option. For example, -Wc,'CONVLIT(IBM-273) CONVLIT()' is interpreted as
CONVLIT(IBM-273,NOWCHAR).

The CONVLIT option does not affect the following types of string literals:
v literals in the #include directive
v literals in the #pragma directive
v literals used to specify linkage, for example, extern "C"
v literals used for the __func__ variables

If #pragma convlit(suspend) is in effect, no string literals or character constants
(wide included) will be converted.

If #pragma convert is in effect, string literals and character constants will be
converted, but wide string literals and wide character constants are not affected by
#pragma convert, even when the CONVLIT(, UNICODE) suboption is specified.

If you specify PPONLY with CONVLIT, the compiler ignores CONVLIT.

42 User's Guide

If you specify the CONVLIT option, the codepage appears after the locale name and
locale code set in the Prolog section of the listing. The option appears in the END
card at the end of the generated object module.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

Notes:

1. Although you can continue to use the __STRING_CODE_SET__ macro, you
should use the CONVLIT option instead. If you specify both the macro and the
option, the compiler diagnoses it and uses the option regardless of the order in
which you specify them

2. The #pragma convert directive provides similar functionality to the CONVLIT
option. It has the advantage of allowing more than one character encoding to
be used for string literals in a single compilation unit.

IPA effects

The CONVLIT option only controls processing for the IPA step for which you
specify it.

During the IPA compile step, the compiler uses the code page that is specified by
the CONVLIT option to convert the character string literals.

Predefined macros

None.

Examples

The result of the following specifications is the same:
v NOCONV(IBM-1027) CONV

v CONV(IBM-1027)

Related information

For more information on the LOCALE compiler option, see “LOCALE |
NOLOCALE” on page 85.

CSECT | NOCSECT
Category

Object code control

Pragma equivalent

#pragma csect

Purpose

Instructs the compiler to generate CSECT names in the output object module.

Chapter 2. Compiler options 43

Syntax

►►
CSE
NOCSE

(qualifier)
►◄

Defaults

CSECT

Parameters

qualifier
Enables the compiler to generate long CSECT names.

Usage

When the CSECT option is in effect, the compiler should ensure that the code,
static data, and test sections of your object module are named. Use this option if
you will be using SMP/E to service your product and to aid in debugging your
program.

When you specify CSECT(qualifier) and the NOGOFF option is in effect, the
LONGNAME option is assumed.

For GOFF, both the NOLONGNAME and LONGNAME options are supported.

The CSECT option names sections of your object module differently depending on
whether you specified CSECT with or without a qualifier.

If you specify the CSECT option without the qualifier suboption, the CSECT option
names the code, static data, and test sections of your object module as csectname,
where csectname is one of the following:
v The member name of your primary source file, if it is a PDS member
v The low-level qualifier of your primary source file, if it is a sequential data set
v The source file name with path information and the right-most extension

information removed, if it is a z/OS UNIX file.
v For NOGOFF, if the NOLONGNAME option is in effect, then the csectname is

truncated to 8 characters long starting from the left. For GOFF, the full csectname
is always used.

code CSECT
Is named with csectname name in uppercase.

data CSECT
Is named with csectname in lower case.

test CSECT
The test CSECT is the static CSECT name with the prefix $. If the static
CSECT name is 8 characters long, the right-most character is dropped and
the compiler issues an informational message except in the case of GOFF.
The test CSECT name is always truncated to 8 characters.

For example, if you compile /u/cricket/project/mem1.ext.c:
v with the options NOGOFF and CSECT, the test CSECT will have the

name $mem1.ex

44 User's Guide

v with the options GOFF and CSECT, the test CSECT will have the name
$mem1.ext

If you specify the CSECT option with the qualifier suboption, the CSECT option
names the code, static data, and test sections of your object module as
qualifier#basename#suffix, where:

qualifier
Is the suboption you specified as a qualifier

basename
Is one of the following:
v The member name of your primary source file, if it is a PDS member
v There is no basename, if your primary source file is a sequential data set

or instream JCL
v The source file name with path information and the right-most extension

information removed, if it is a z/OS UNIX file

suffix Is one of the following:

C For code CSECT

S For static CSECT

T For test CSECT

Notes:

1. If the qualifier suboption is longer than 8 characters, you must use the binder.
2. The qualifier suboption takes advantage of the capabilities of the binder.
3. The # that is appended as part of the #C, #S, or #T suffix is not locale-sensitive.
4. The string that is specified as the qualifier suboption has the following

restrictions:
v Leading and trailing blanks are removed
v You can specify a string of any length. However if the complete CSECT

name exceeds 1024 bytes, it is truncated starting from the left.
5. If the source file is either sequential or instream in your JCL, you must use the

#pragma csect directive to name your CSECT. Otherwise, you may receive an
error message at bind time.

The CSECT names for all the sections (including the code, static data and test
sections) must conform to the following rules:
v The first character must be an alphabetic character. An alphabetic character is a

letter from A through Z, or from a through z, or _, $(code point X’5B’), #(code
point X’7B’) or @(code point X’7C’). The other characters in the CSECT name
may be alphabetic characters, digits, or a combination of the two.

v No other special characters may be included in the CSECT name.
v No spaces are allowed in the CSECT name.
v No double-byte data is allowed in the CSECT name.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

For the IPA link step, this option has the following effects:

Chapter 2. Compiler options 45

1. If you specify the CSECT option, the IPA link step names all of the CSECTs that
it generates.
The IPA link step determines whether the IPA Link control file contains CSECT
name prefix directives. If you did not specify the directives, or did not specify
enough CSECT entries for the number of partitions, the IPA link step
automatically generates CSECT name prefixes for the remaining partitions, and
issues an error diagnostic message each time.
The form of the CSECT name that IPA Link generates depends on whether the
CSECT or CSECT(qualifier) format is used.

2. If you do not specify the CSECT option, but you have specified CSECT name
prefix directives in the IPA Link control file, the IPA link step names all CSECTs
in a partition. If you did not specify enough CSECT entries for the number of
partitions, the IPA link step automatically generates a CSECT name prefix for
each remaining partition, and issues a warning diagnostic message each time.

3. If you do not specify the CSECT option, and do not specify CSECT name prefix
directives in the IPA Link control file, the IPA link step does not name the
CSECTs in a partition.

The IPA link step ignores the information that is generated by #pragma csect on
the IPA compile step.

Predefined macros

None.

Examples

The qualifier suboption of the CSECT option allows the compiler to generate long
CSECT names.

When you specify CSECT(qualifier), the code, data, and test CSECTs are always
generated.

If you use CSECT("") or CSECT(), the CSECT name has the form basename#suffix,
where basename is:
v @Sequential@ for a sequential data set
v @InStream@ for instream JCL

DEBUG | NODEBUG
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Instructs the compiler to generate debugging information.

46 User's Guide

Syntax

►►

▼

NODEBUG
DEBUG

,

(FORMAT (DWARF))
SYMBOL
NOSYMBOL

►◄

Defaults
v NODEBUG
v For SYMBOL, the default is SYMBOL.

Parameters

FORMAT

The DWARF suboption produces debugging information in the DWARF
Version 4 debugging information format, stored in the file specified by the
FILE suboption, or in GOFF NOLOAD classes when the NOFILE suboption is
specified.

SYMBOL

This option provides you with access to variable and other symbol
information. For optimized code, the results are not always well-defined for
every variable because the compiler might have optimized away their use.

Note: The default of this suboption is DEBUG(SYMBOL), but when the HOT
or IPA option is used with DEBUG, DEBUG(NOSYMBOL) is forced.

Usage

When the DEBUG option is in effect, the compiler generates debugging
information based on the DWARF Version 4 debugging information format, which
has been developed by the UNIX International Programming Languages Special
Interest Group (SIG), and is an industry standard format.

If you specify the INLINE and DEBUG(FORMAT(DWARF)) compiler options when
OPTIMIZE is in effect, the inline debugging information is generated for inline
procedures as well as parameters and local variables of inline procedures.

If you specify the INLINE and DEBUG compiler options when NOOPTIMIZE is in
effect, INLINE is ignored.

When OPT(2) or OPT(3) is used with DEBUG, the DEBUG(SYMBOL) suboption is
enabled by default.

In the z/OS UNIX System Services environment, -g forces
DEBUG(FORMAT(DWARF)), NOHOT, and NOOPTIMIZE.

If you specify DEBUG(FORMAT(DWARF)), automonitor debugging information is
generated to list the variables that occur on each statement of the program source
file.

Chapter 2. Compiler options 47

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

For the IPA compile step, you can specify all of the DEBUG suboptions that are
appropriate for the language of the code that you are compiling. However, they
affect processing only if you have requested code generation, and only the
conventional object file is affected.

If only IPA object is produced at the IPA compile step, the DEBUG options are
accepted and ignored.

Predefined macros

None.

Examples

If you specify DEBUG and NODEBUG multiple times, the compiler uses the last
specified option with the last specified suboption. For example, the following
specifications have the same result:
metalc -Wc,"NODEBUG(FORMAT(DWARF))" -Wc,"DEBUG(NOSYMBOL)" hello.c

metalc -WC,"DEBUG(FORMAT(DWARF), NOSYMBOL)" hello.c

DEFINE
Category

Language element control

Pragma equivalent

None.

Purpose

Defines a macro as in a #define preprocessor directive.

Syntax

►► ▼

,

DEF (name)
=def
=

►◄

Defaults

No default user definitions.

Parameters

DEFINE(name)
Is equal to the preprocessor directive #define name 1.

48 User's Guide

DEFINE(name=def)
Is equal to the preprocessor directive #define name def.

DEFINE(name=)
Is equal to the preprocessor directive #define name.

Usage

When the DEFINE option is in effect, the preprocessor macros that take effect
before the compiler processes the file are defined.

You can use the DEFINE option more than once.

If the suboptions that you specify contain special characters, see “Using special
characters” on page 8 for information on how to escape special characters.

Note: metalc passes -D and -U to the compiler, which interprets them as DEFINE
and UNDEFINE. For more information, see Chapter 14, “metalc — Compiler
invocation using a customizable configuration file,” on page 219.

Predefined macros

To use the __STRING_CODE_SET__ macro to change the code page that the
compiler uses for character string literals, you must define it with the DEFINE
compiler option; for example:
DEFINE(__STRING_CODE_SET__="ISO8859-1")

Examples

Note: There is no command-line equivalent for function-like macros that take
parameters such as the following:
#define max(a,b) ((a)>(b)?(a):(b))

DIGRAPH | NODIGRAPH
Category

Language element control

Pragma equivalent

None.

Purpose

Enables recognition of digraph key combinations or keywords to represent
characters not found on some keyboards.

Note: A digraph is a combination of keys that produces a character that is not
available on some keyboards.

Syntax

►►
DIGR
NODIGR ►◄

Chapter 2. Compiler options 49

Defaults

DIGRAPH

Usage

Table 15 shows the digraphs that Enterprise Metal C for z/OS supports:

Table 15. Digraphs

Key Combination Character Produced

<% {

%> }

<: [

:>]

%: #

%% #

%:%: ##

%%%% ##

IPA effects

The IPA link step issues a diagnostic message if you specify the DIGRAPH option
on that step.

Predefined macros

__DIGRAPHS__ is predefined to 1 when the DIGRAPH compiler option is in
effect.

Examples

Note: Digraphs are not replaced in string literals, comments, or character literals.
For example:

char * s = "<%%>"; // stays "<%%>"

switch (c) {
case ’<%’ : ... // stays ’<%’
case ’%>’ : ... // stays ’%>’

}

DSAUSER | NODSAUSER
Category

Object code control

Pragma equivalent

None.

Purpose

Requests a user field to be reserved on the stack.

50 User's Guide

Syntax

►►
NODSAUSER
DSAUSER

(value)
►◄

Defaults

NODSAUSER

Parameter

value An integer in the range of 0 to 50.

Usage

When DSAUSER is specified, and no suboption is specified with DSAUSER, a field
of the size of a pointer is reserved on the stack. The user field is a 4-byte field for
AMODE 31 and an 8-byte field for AMODE 64. The user field is only allocated if
the function has the user supplied prolog/epilog code.

If a value parameter is specified with DSAUSER, a user field with the size of value
32-bit words is allocated. Specifying DSAUSER with the value parameter requires a
minimum architecture level of ARCH(6). A value of 0 has the same effect as
NODSAUSER.

The reserved user field can be addressed by using the global set symbol
&CCN_DSAUSER.

IPA effects

If the DSAUSER option is specified during any of the IPA compile steps, it is
applied to all partitions created by the IPA link step. The largest value is used for
all partitions in the IPA link step.

ENUMSIZE
Category

Floating-point and integer control

Pragma equivalent

#pragma enum

Purpose

Specifies the amount of storage occupied by enumerations

Chapter 2. Compiler options 51

Syntax

►►
SMALL

ENUM (INT)
1
2
4
8

►◄

Defaults

ENUM(SMALL)

Parameters

SMALL
Specifies that enumerations occupy a minimum amount of storage, which is
either 1, 2, 4, or 8 bytes of storage, depending on the range of the enum
constants.

INT
Specifies that enumerations occupy 4 bytes of storage and are represented by
int.

1 Specifies that enumerations occupy 1 byte of storage.

2 Specifies that enumerations occupy 2 bytes of storage

4 Specifies that enumerations occupy 4 bytes of storage.

8 Specifies that enumerations occupy 8 bytes of storage. This suboption is only
valid with LP64.

Usage

When the ENUMSIZE option is in effect, you can select the type used to represent
all enum constants defined in a compilation unit.

The following tables illustrate the preferred sign and type for each range of enum
constants:

Table 16. ENUM constants for C

ENUM Constants small 1 2 4 8 * int

0..127 unsigned
char

signed char short int long int

-128..127 signed char signed char short int long int

0..255 unsigned
char

unsigned
char

short int long int

0..32767 unsigned
short

ERROR short int long int

-32768..32767 short ERROR short int long int

0..65535 unsigned
short

ERROR unsigned
short

int long int

0..2147483647 unsigned int ERROR ERROR int long int

-231..231-1 int ERROR ERROR int long int

52 User's Guide

Table 16. ENUM constants for C (continued)

ENUM Constants small 1 2 4 8 * int

0..4294967295 unsigned int ERROR ERROR unsigned int long ERROR

0..(263-1) * unsigned
long

ERROR ERROR ERROR long ERROR

-263..(263-1) * long ERROR ERROR ERROR long ERROR

0..264 * unsigned
long

ERROR ERROR ERROR unsigned
long

ERROR

Note: The rows and columns marked with asterisks (*) in this table are only valid
when the LP64 option is in effect.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

Predefined macros

The __ENUM_OPT macro is predefined to 1 when the ENUMSIZE option is in
effect; otherwise it is undefined.

Examples

If the specified storage size is smaller than that required by the range of enum
constants, an error is issued by the compiler; for example:

#include <limits.h>
#pragma enum(1)
enum e_tag {

a = 0,
b = SHRT_MAX /* error */

} e_var;
#pragma enum(reset)

EPILOG
Category

Object code control

Pragma equivalent

#pragma epilog

Purpose

Enables you to provide your own function exit code for all functions that have
extern scope, or for all extern and static functions.

Syntax

►► EPILOG ("text-string")
EXTERN ("text-string")
ALL

►◄

Chapter 2. Compiler options 53

Defaults

The compiler generates default epilog code for the functions that do not have
user-supplied epilog code.

Parameters

text-string

text-string is a C string, which must contain valid HLASM statements.

If the text-string consists of white-space characters only or if the text-string is
not provided, then the compiler ignores the option specification. If the
text-string does not contain any white-space characters, then the compiler will
insert leading spaces in front. Otherwise, the compiler will insert the text-string
into the function epilog location of the generated assembler source. The
compiler does not understand or validate the contents of the text-string. In
order to satisfy the assembly step later, the given text-string must form valid
HLASM code with the surrounding code generated by the compiler.

Note: Special characters like newline and quote are shell (or command line)
meta characters, and maybe preprocessed before reaching the compiler. It is
advisable to avoid using them. The intended use of this option is to specify an
assembler macro as the function epilog.

EXTERN
If the EPILOG option is specified with this suboption or without any
suboption, the epilog applies to all functions that have external linkage in the
compilation unit.

ALL
If the EPILOG option is specified with this suboption, the epilog also applies to
static functions defined in the compilation unit.

Usage

For more information on METAL C default epilog code, see Enterprise Metal C for
z/OS Programming Guide and Reference.

Notes:

1. When the EPILOG option is specified multiple times with the same suboption
all or extern, only the function entry code of the last suboption specified will
be displayed.

2. The EPILOG option with the suboption all overwrites the one with extern
suboption, or the one without any suboption.

IPA effects

See section Building Metal C programs with IPA in Enterprise Metal C for z/OS
Programming Guide and Reference.

Predefined macros

None.

54 User's Guide

Related information

See “PROLOG” on page 116 for information on providing function entry code for
system development.

EVENTS | NOEVENTS
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Produces an event file that contains error information and source file statistics.

Syntax

►►
NOEVENT
EVENT

(Sequential filename)
Partitioned data set
Partitioned data set (member)
z/OS UNIX System Services filename
z/OS UNIX System Services directory

►◄

Defaults

NOEVENTS

Parameters

Sequential filename
Specifies the sequential data set file name for the event file.

Partitioned data set
Specifies the partitioned data set for the event file.

Partitioned data set (member)
Specifies the partitioned data set (member) for the event file.

z/OS UNIX System Services filename
Specifies the z/OS UNIX file name for the event file.

z/OS UNIX System Services directory
Specifies the z/OS UNIX System Services directory for the event file.

Usage

The compiler writes the events data to the DD:SYSEVENT ddname, if you
allocated one before you called the compiler. If this ddname is not allocated, the
compiler will allocate one dynamically using default characteristics
(LRECL=4095,RECFM=V,BLKSIZE=4099), and the name is the source file name
with SYSEVENT as the lowest-level qualifier. You can control the name by
specifying the file name as the suboption of the EVENTS option.

Chapter 2. Compiler options 55

If you specified a suboption, the compiler uses the data set that you specified, and
ignores the DD:SYSEVENT.

There is no set requirement on the file characteristics for the event file. If you want
to allocate an event file, you should specify a record length that is large enough to
contain the longest message that the compiler can emit plus approximately 40
bytes for the control information.

If the source file is a z/OS UNIX file, and you do not specify the event file name
as a suboption, the compiler writes the event file in the current working directory.
The event file name is the name of the source file with the extension .err.

The compiler ignores #line directives when the EVENTS option is active, and
issues a warning message.

Predefined macros

None.

EXPMAC | NOEXPMAC
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Lists all expanded macros in the source listing.

Syntax

►►
NOEXP
EXP ►◄

Defaults

NOEXPMAC

Usage

If you want to use the EXPMAC option, you must also specify the SOURCE
compiler option to generate a source listing. If you specify the EXPMAC option but
omit the SOURCE option, the compiler issues a warning message, and does not
produce a source listing.

Predefined macros

None.

56 User's Guide

Related information

“SOURCE | NOSOURCE” on page 134

FLAG | NOFLAG
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Limits the diagnostic messages to those of a specified level or higher.

Syntax

►►
FL (severity)
NOFL ►◄

Defaults

FLAG(I)

Parameters

severity
Specifies the minimum severity level.

severity may be one of the following:

I An informational message.

W A warning message that calls attention to a possible error, although the
statement to which it refers is syntactically valid.

E An error message that shows that the compiler has detected an error and
cannot produce an object deck.

S A severe error message that describes an error that forces the compilation
to terminate.

U An unrecoverable error message that describes an error that forces the
compilation to terminate.

Usage

When the FLAG option is in effect, you can specify the minimum severity level of
diagnostic messages to be reported in a listing and displayed on a terminal.

If you specified the option SOURCE or LIST, the messages generated by the
compiler appear immediately following the incorrect source line, and in the
message summary at the end of the compiler listing.

The NOFLAG option is the same as the FLAG(U) option.

Chapter 2. Compiler options 57

IPA effects

The FLAG option has the same effect on the IPA link step that it does on a regular
compilation.

Predefined macros

None.

Related information

“SOURCE | NOSOURCE” on page 134

“LIST | NOLIST” on page 83

FLOAT
Category

Floating-point and integer control

Pragma equivalent

None.

Purpose

Selects different strategies for speeding up or improving the accuracy of
floating-point calculations.

Syntax

►► ▼

,

FLOAT (HEX | IEEE)
FOLD | NOFOLD
MAF | NOMAF
RRM | NORRM
AFP | NOAFP

NOVOLATILE
(VOLATILE)

►◄

Defaults
v FLOAT(IEEE, FOLD, NOMAF, NORRM, NOAFP)
v For ARCH(3) or higher, the default suboption is AFP(NOVOLATILE).

Parameters

HEX | IEEE

Specifies the format of floating-point numbers and instructions:
v IEEE instructs the compiler to generate binary floating-point numbers and

instructions. The unabbreviated form of this suboption is IEEE754.
v HEX instructs the compiler to generate hexadecimal floating-point formatted

numbers and instructions. The unabbreviated form of this suboption is
HEXADECIMAL.

58 User's Guide

FOLD | NOFOLD

Specifies that constant floating-point expressions in function scope are to be
evaluated at compile time rather than at run time. This is known as folding.

In binary floating-point mode, the folding logic uses the rounding mode set by
the ROUND option.

In hexadecimal floating-point mode, the rounding is always towards zero. If
you specify NOFOLD in hexadecimal mode, the compiler issues a warning and
uses FOLD.

MAF | NOMAF

Makes floating-point calculations faster and more accurate by using
floating-point multiply-add instructions where appropriate. The results may
not be exactly equivalent to those from similar calculations performed at
compile time or on other types of computers. Negative zero results may be
produced. This option may affect the precision of floating-point intermediate
results.

Note: The suboption MAF does not have any effect on extended floating-point
operations.

For ARCH(8) or lower, MAF is not available for hexadecimal floating-point
mode.

RRM | NORRM

Runtime Rounding Mode (RRM) prevents floating-point optimizations that are
incompatible with runtime rounding to plus and minus infinity modes. It
informs the compiler that the floating-point rounding mode may change at run
time or that the floating-point rounding mode is not round to nearest at run
time.

RRM is not available for hexadecimal floating-point mode.

AFP(VOLATILE | NOVOLATILE) | NOAFP

AFP instructs the compiler to generate code which uses the full complement of
16 floating point registers. These include the four original floating-point
registers, numbered 0, 2, 4, and 6, and the Additional Floating Point (AFP)
registers, numbered 1, 3, 5, 7 and 8 through 15.

AFP is not available before ARCH(3). If the code generated using AFP registers
must run on a pre-ARCH(3) machine, emulation is provided by the operating
system. Code with AFP registers will not run on a system that is older than G5
and OS/390® V2R6.

Note: This emulation has a significant performance cost to the execution of the
application on the non-AFP processors. This is why the default is NOAFP
when ARCH(2) or lower is specified.

If VOLATILE is specified then AFP FPRs 8-15 are considered volatile, which
means that FPRs 8-15 are not expected to be preserved by the called program.

Note: The AFPs are FPR1, 3, 5, 7 and 8-15. However, FPRs 0-7 are always
considered volatile. The AFP(VOLATILE | NOVOLATILE) option only controls
how the compiler handles AFP FPRs 8-15, and not all the AFP registers.

NOAFP limits the compiler to generating code using only the original four
floating-point registers, 0, 2, 4, and 6, which are available on all IBM Z®

machine models.

Chapter 2. Compiler options 59

Usage

When the FLOAT option is in effect, you can select the format of floating-point
numbers. The format can be either base 2 IEEE-754 binary format, or base 16
z/Architecture hexadecimal format.

You should use IEEE floating-point in the following situations:
v You deal with data that are already in IEEE floating-point format.
v You need the increased exponent range.
v You want the changes in programming paradigm provided by infinities and

NaN (not a number).

For more information about the IEEE format, refer to the IEEE 754-1985 IEEE
Standard for Binary Floating-Point Arithmetic.

When you use IEEE floating-point, make sure that you are in the same rounding
mode at compile time (specified by the ROUND(mode) option), as at run time.
Entire compilation units will be compiled with the same rounding mode
throughout the compilation. If you switch runtime rounding modes inside a
function, your results may vary depending upon the optimization level used and
other characteristics of your code; switch rounding mode inside functions with
caution.

If you have existing data in hexadecimal floating-point (the original base 16
z/Architecture hexadecimal floating-point format), and have no need to
communicate this data to platforms that do not support this format, there is no
reason for you to change to IEEE floating-point format.

Applications that mix the two formats are not supported.

The binary floating-point instruction set is physically available only on processors
that are part of the ARCH(3) group or higher. You can request FLOAT(IEEE) code
generation for an application that will run on an ARCH(2) or earlier processor, if
that processor runs on the OS/390 Version 2 Release 6 or higher operating system.
This operating system level is able to intercept the use of an "illegal" binary
floating-point instruction, and emulate the execution of that instruction such that
the application logic is unaware of the emulation. This emulation comes at a
significant cost to application performance, and should only be used under special
circumstances. For example, to run exactly the same executable object module on
backup processors within your organization, or because you make incidental use of
binary floating-point numbers.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

The IPA compile step generates information for the IPA link step.

Note: The option FLOAT(AFP(VOLATILE)) is not supported by IPA. If the option
FLOAT(AFP(VOLATILE)) is passed to the IPA Compile or Link phase, then the IPA
phase will emit a severe diagnostic message.

The IPA link step merges and optimizes the application code, and then divides it
into sections for code generation. Each of these sections is a partition. The IPA link
step uses information from the IPA compile step to determine if a subprogram can

60 User's Guide

be placed in a particular partition. Only compatible subprograms are included in a
given partition. Compatible subprograms have the same floating-point mode, and
the same values for the FLOAT suboptions, and the ROUND and STRICT options:
v Floating-point mode (binary or hexadecimal)

The floating-point mode for a partition is set to the floating-point mode (binary
or hexadecimal) of the first subprogram that is placed in the partition.
Subprograms that follow are placed in partitions that have the same
floating-point mode; a binary floating-point mode subprogram is placed in a
binary floating-point mode partition, and a hexadecimal mode subprogram is
placed in a hexadecimal mode partition.
If you specify FLOAT(HEX) or FLOAT(IEEE) during the IPA link step, the option
is accepted, but ignored. This is because it is not possible to change the
floating-point mode after source analysis has been performed.
The Prolog and Partition Map sections of the IPA link step listing display the
setting of the floating-point mode.

v AFP | NOAFP
The value of AFP for a partition is set to the AFP value of the first subprogram
that is placed in the partition. Subprograms that have the same AFP value are
then placed in that partition.
You can override the setting of AFP by specifying the suboption on the IPA link
step. If you do so, all partitions will contain that value, and the Prolog section of
the IPA link step listing will display the value.
The Partition Map section of the IPA link step listing and the END information
in the IPA object file display the current value of the AFP suboption.

v FOLD | NOFOLD
Hexadecimal floating-point mode partitions are always set to FOLD.
For binary floating-point partitions, the value of FOLD for a partition is set to
the FOLD value of the first subprogram that is placed in the partition.
Subprograms that have the same FOLD value are then placed in that partition.
During IPA inlining, subprograms with different FOLD settings may be
combined in the same partition. When this occurs, the resulting partition is
always set to NOFOLD.
You can override the setting of FOLD | NOFOLD by specifying the suboption
on the IPA link step. If you do so, all binary floating-point mode partitions will
contain that value, and the Prolog section of the IPA link step listing will display
the value.
For binary floating-point mode partitions, the Partition Map section of the IPA
link step listing displays the current value of the FOLD suboption.

v MAF | NOMAF
For IPA object files generated with the FLOAT(IEEE) option, the value of MAF
for a partition is set to the MAF value of the first subprogram that is placed in
the partition. Subprograms that have the same MAF for this suboption are then
placed in that partition.
For IPA object files generated with the FLOAT(IEEE) option, you can override
the setting of MAF | NOMAF by specifying the suboption on the IPA link step.
If you do so, all binary floating-point mode partitions will contain that value,
and the Prolog section of the IPA link step listing will display the value.
For binary floating-point mode partitions, the Partition Map section of the IPA
link step listing displays the current value of the MAF suboption.
Hexadecimal mode partitions are always set to NOMAF for ARCH(8) or lower.
You cannot override this setting.

Chapter 2. Compiler options 61

v RRM | NORRM
For IPA object files generated with the FLOAT(IEEE) option, the value of RRM
for a partition is set to the RRM value of the first subprogram that is placed in
the partition. During IPA inlining, subprograms with different RRM settings may
be combined in the same partition. When this occurs, the resulting partition is
always set to RRM.
For IPA object files generated with the FLOAT(IEEE) option, you can override
the setting of RRM | NORRM by specifying the suboption on the IPA link step.
If you do so, all binary floating-point mode partitions will contain that value,
and the Prolog section of the IPA link step listing will display the value.
For binary floating-point mode partitions, the Partition Map section of the IPA
link step listing displays the current value of the RRM suboption.
Hexadecimal mode partitions are always set to NORRM. You cannot override
this setting.

v ROUND option
For IPA object files generated with the FLOAT(IEEE) option, the value of the
ROUND option for a partition is set to the value of the first subprogram that is
placed in the partition.
You can override the setting of ROUND by specifying the option on the IPA link
step. If you do so, all binary floating-point mode partitions will contain that
value, and the Prolog section of the IPA link step listing will display the value.
For binary floating-point mode partitions, the Partition Map section of the IPA
link step listing displays the current value of the ROUND suboption.
Hexadecimal mode partitions are always set to round towards zero. You cannot
override this setting.

v STRICT option
The value of the STRICT option for a partition is set to the value of the first
subprogram that is placed in the partition. During IPA inlining, subprograms
with different STRICT settings may be combined in the same partition. When
this occurs, the resulting partition is always set to STRICT.
If there are no compilation units with subprogram-specific STRICT options, all
partitions will have the same STRICT value.
If there are any compilation units with subprogram-specific STRICT options,
separate partitions will continue to be generated for those subprograms with a
STRICT option, which differs from the IPA Link option.
The Partition Map sections of the IPA link step listing and the object module
display the value of the STRICT option.

Note: The inlining of subprograms (C functions) is inhibited if the FLOAT
suboptions (including the floating-point mode), and the ROUND and STRICT
options are not all compatible between compilation units. Calls between
incompatible compilation units result in reduced performance. For best
performance, compile your applications with consistent options.

Predefined macros

__BFP__ is defined to 1 when you specify binary floating point (BFP) mode by
using the FLOAT(IEEE) compiler option.

62 User's Guide

GOFF | NOGOFF
Category

Object code control

Pragma equivalent

None.

Purpose

Instructs the compiler to produce assembly in a form suitable for generation of a
Generalized Object File Format (GOFF) object file.

When the GOFF option is in effect, the compiler produces an assembly file suitable
for GOFF assembly.

When the NOGOFF option is in effect, the compiler produces the default assembly
file.

Syntax

►►
NOGOFF
GOFF ►◄

Defaults
v NOGOFF

Usage

The GOFF format supersedes the IBM S/370 Object Module and Extended Object
Module formats. It removes various limitations of the previous format (for
example, 16 MB section size) and provides a number of useful extensions,
including native z/OS support for long names and attributes. GOFF incorporates
some aspects of industry standards such as XCOFF and ELF.

When you specify the GOFF option, the compiler uses LONGNAME and CSECT()
by default. You can override these default values by explicitly specifying the
NOLONGNAME or the NOCSECT option.

When you specify the GOFF option, you must use the binder to bind the output
object.

Note: When using GOFF and source files with duplicate file names, the linker may
emit an error and discard one of the code sections. In this case, turn off the CSECT
option by specifying NOCSECT.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

The IPA compile step generates information for the IPA link step.

Chapter 2. Compiler options 63

The IPA link step merges and optimizes the application code, and then divides it
into sections for code generation. Each of these sections is a partition. The GOFF
option affects the object format of the code and data generated for each partition.

Information from non-IPA input files is processed and transformed based on the
original format. GOFF format information remains in GOFF format.

Predefined macros

__GOFF__ is predefined to 1 when the GOFF compiler option is in effect.

Related information

For more information on related compiler options, see:
v “LONGNAME | NOLONGNAME” on page 88
v “CSECT | NOCSECT” on page 43

HALT
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Stops compilation process of a set of source code before producing any object,
executable, or assembler source files if the maximum severity of compile-time
messages equals or exceeds the severity specified for this option.

Syntax

►► HALT (num) ►◄

Defaults

HALT(16)

Parameters

num
Return code from the compiler. See Enterprise Metal C for z/OS Messages for a
list of return codes.

Usage

If the return code from compiling a particular member is greater than or equal to
the value num specified in the HALT option, no more members are compiled. This
option only applies to the compilation of all members of a specified PDS or z/OS
UNIX System Services file system directory.

64 User's Guide

IPA effects

The HALT option affects the IPA link step in a way similar to the way it affects the
IPA compile step, but the message severity levels may be different.

Predefined macros

None.

HALTONMSG | NOHALTONMSG
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Stops compilation before producing any object, executable, or assembler source
files if a specified error message is generated.

Syntax

►► ▼

NOHALTON
,

HALTON (msg_number) ►◄

Defaults

NOHALTON

Parameters

msg_number
Message number.

Note: The HALTONMSG option allows you to specify more than one message
number by separating the message numbers with colons.

Usage

When the HALTONMSG compiler option is in effect, the compiler stops after the
compilation phase when it encounters the specified message number.

When the compilation stops as a result of the HALTONMSG option, the compiler
return code is nonzero.

Predefined macros

None.

Chapter 2. Compiler options 65

HGPR | NOHGPR
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Enables the compiler to exploit 64-bit General Purpose Registers (GPRs) in 32-bit
programs targeting z/Architecture hardware.

When the HGPR compiler option is in effect, the compiler can exploit 64-bit GPRs
in the generated code. The compiler will take advantage of this permission when
the code generation condition is appropriate.

When the NOHGPR compiler option is in effect, the compiler cannot exploit 64-bit
GPRs in the generated code.

Syntax

►►
HGPR
NOHGPR

PRESERVE
(NOPRESERVE)

►◄

Defaults

HGPR(PRESERVE)

Parameters

PRESERVE
Instructs the compiler to preserve the high halves of the 64-bit GPRs that a
function is using, by saving them in the prolog for the function and restoring
them in the epilog. The PRESERVE suboption is only necessary if the caller is
not known to be Enterprise Metal C for z/OS compiler-generated code.

NOPRESERVE
Instructs the compiler not to preserve the high halves of the 64-bit GPRs that a
function is using.

Usage

HGPR means "High-half of 64-bit GPR", which refers to the use of native 64-bit
instructions. In particular, if the application has the use of long long types, it
should benefit from the native 64-bit instructions.

The HGPR compiler option requires ARCH(5) or a higher level.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

66 User's Guide

IPA effects

The IPA compile step generates information for the IPA link step.

The IPA link step will accept the HGPR option, but ignores it. The IPA link step
merges and optimizes the application code, and then divides it into sections for
code generation. Each of these sections is a partition. The HGPR setting for a
partition is determined by the first function that is imported into the partition. All
other functions that are imported into the given partition must have the same
HGPR option setting.

Predefined macros

None.

HOT | NOHOT
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Performs high-order loop analysis and transformations (HOT) during optimization.

Syntax

►►
NOHOT
HOT ►◄

Defaults

NOHOT

Usage

If HOT is specified, the optimization level is forced to a level of at least 2. If a
lower level is requested, it is increased to 2. If a higher level is requested, the
requested value is used.

When the HOT option is used with DEBUG, the DEBUG(NOSYMBOL) suboption
is forced.

If -g is specified, -Wc,NOHOT is forced.

The HOT option is independent of the UNROLL command line option or pragma.
The HOT option setting will be listed in the compiler listing, the IPA Link phase
listing, and the end card of the output object file.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

Chapter 2. Compiler options 67

Predefined macros

None.

INCLUDE | NOINCLUDE
Category

Compiler input

Pragma equivalent

None.

Purpose

Specifies additional header files to be included in a compilation unit, as though the
files were named in consecutive #include "file" statements inserted before the first
line of the source file.

The header files specified with the INCLUDE option are inserted before the first
line of the source file.

This option simplifies the task of porting code across supported platforms by
providing a way to affect the processing of the source code without having to
change it.

Syntax

►►
NOINCLUDE
INCLUDE (file) ►◄

Defaults

NOINCLUDE, which ignores any INCLUDE options that were in effect prior to
NOINCLUDE. The NOINCLUDE option does not have suboptions.

Parameters

file
The name of a header file to be included at the beginning of the source file
being compiled.

Usage

This option is applied only to the files specified in the same compilation as if it
was specified for each individual file. It is not passed to any compilations that
occur during the link step.

If you specify the option multiple times, the header files are included in order of
appearance. If the same header file is specified multiple times with this option, the
header is treated as if it was included multiple times by #include directives in the
source file.

The file specified with the INCLUDE option is searched for first in the current
directory when compiling in z/OS UNIX. If the file is not found in the current

68 User's Guide

directory or when compiling in batch, the file is searched for as if it was included
by an #include directive in the source file.

The files specified with the INCLUDE option will be included as a dependency of
the source file if the -M or MAKEDEF option is used to generate information to be
included in a "make" description file.

When a dependency file is created as a result of a first build with the INCLUDE
option, a subsequent build without the INCLUDE option will trigger recompile if
the header file on the INCLUDE option was touched between the two builds.

The files specified with the INCLUDE option will show up in the "INCLUDES"
section of the compiler listing file that is generated by the SOURCE or LIST option,
similar to how they would as if they were included by #include "file_name"
directives.

IPA effects

None.

Predefined macros

None.

Examples

The following file t.h is a predefined header file:
#define STRING "hello world"

The following source file t.c is to be compiled:
int main () {

return strlen (STRING);
}

To compile t.c by specifying t.h with the INCLUDE option, enter:
metalc t.c -qinclude=string.h -qinclude=t.h
as t.s
ld t.o
./a.out
echo $?

The following output is produced:
11

INFO | NOINFO
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Produces groups of informational messages.

Chapter 2. Compiler options 69

The compiler does not emit messages for files in the standard search paths for the
compiler and system header files.

Syntax

►►

▼

NOIN
IN

(ALL)
,

subopts

►◄

Defaults

NOINFO

Parameters

subopts
Use subopts if you want to specify the type of warning messages.

A list of the applicable subopts is as follows:

ALS | NOALS
Emits report on possible violations of the ANSI aliasing rule in effect.

The traceback diagnostic messages refer to the character number as the
column number.

CMP | NOCMP
Emits conditional expression check messages.

CND | NOCND
Emits messages on redundancies or problems in conditional expressions.

CNV | NOCNV
Emits messages about conversions.

CNS | NOCNS
Emits redundant operation on constants messages.

EFF | NOEFF
Emits information about statements with no effect.

ENU | NOENU
Emits information about ENUM checks.

EXT | NOEXT
Emits warnings about unused variables that have external declarations.

GEN | NOGEN
Emits messages if the compiler generates temporaries, and diagnoses
variables that are used without being initialized.

LAN | NOLAN
Emits language level checks.

PAR | NOPAR
Emits warning messages on unused parameters.

POR | NOPOR
Emits warnings about non-portable constructs.

70 User's Guide

PPC | NOPPC
Emits messages on possible problems with using the preprocessor.

PPT | NOPPT
Emits trace of preprocessor actions.

PRO | NOPRO
Emits warnings about missing function prototypes.

REA | NOREA
Emits warnings about unreached statements.

RET | NORET
Emits warnings about return statement consistency.

TRD | NOTRD
Emits warnings about possible truncation of data.

USE | NOUSE
Emits information about usage of variables.

ALL Enables all of the suboptions except ALS and PPT. Suboptions ALS and
PPT have to be turned on explicitly.

Usage

If you specify INFO with no suboptions, it is the same as specifying INFO(ALL).

IPA effects

The IPA link step merges and optimizes the application code; then the IPA link
step divides it into sections for code generation. Each of these sections is a
partition.

If you do not specify the option on the IPA link step, the value used for a partition
depends on the value that you specified for the IPA compile step for each
compilation unit that provided code for that partition.

The object module and the Partition Map section of the IPA link step listing
display the final option value for each partition. If you override this option on the
IPA link step, the Prolog section of the IPA link step listing displays the value of
the option.

The Compiler Options Map section of the IPA link step listing displays the option
value that you specified for each IPA object file during the IPA compile step.

Predefined macros

None.

INITAUTO | NOINITAUTO
Category

Error checking and debugging

Pragma equivalent

None.

Chapter 2. Compiler options 71

Purpose

Initializes automatic variables to a specific value for debugging purposes.

When the INITAUTO compiler option is in effect, the option instructs the compiler
to generate extra code to initialize these variables with a user-defined value. This
reduces the runtime performance of the program and should only be used for
debugging.

When the NOINITAUTO compiler option is in effect, automatic variables without
initializers are not implicitly initialized.

Syntax

►►
NOINITA
INITA (nnnnnnnn)

, WORD
►◄

Defaults

NOINITAUTO

Parameters

nnnnnnnn
The hexadecimal value you specify for nnnnnnnn represents the initial value
for automatic storage in bytes. It can be two to eight hexadecimal digits in
length. There is no default for this value.

WORD
The suboption WORD is optional, and can be abbreviated to W. If you specify
WORD , nnnnnnnnn is a word initializer; otherwise it is a byte initializer. Only
one initializer can be in effect for the compilation. If you specify INITAUTO
more than once, the compiler uses the last setting.

Note: The word initializer is useful in checking uninitialized pointers.

Usage

Automatic variables require storage only while the block in which they are
declared is active.

If you specify a byte initializer, and specify more than 2 digits for nnnnnnnn, the
compiler uses the last 2 digits.

If you specify a word initializer, the compiler uses the last 2 digits to initialize a
byte, and all digits to initialize a word.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

The IPA compile step generates information for the IPA link step.

72 User's Guide

If you do not specify the INITAUTO option in the IPA link step, the setting in the
IPA compile step will be used. The IPA link step merges and optimizes the
application’s code, and then divides it into sections for code generation. Each of
these sections is a partition. The IPA link step uses information from the IPA
compile step to determine if a subprogram can be placed in a particular partition.
Only compatible subprograms are included in a given partition. Compatible
subprograms have the same INITAUTO setting.

The IPA link step sets the INITAUTO setting for a partition to the specification of
the first subprogram that is placed in the partition. It places subprograms that
follow in partitions that have the same INITAUTO setting.

You can override the setting of INITAUTO by specifying the option on the IPA link
step. If you do so, all partitions will use that value, and the Prolog section of the
IPA link step listing will display the value.

The Partition Map sections of the IPA link step listing and the object module
display the value of the INITAUTO option.

Predefined macros
v __INITAUTO__ is defined to the hexadecimal constant (0xnnU), including the

parentheses, when the INITAUTO compiler option is in effect. Otherwise, it is
not defined.

v __INITAUTO_W__ is defined to the hexadecimal constant (0xnnnnnnnnU),
including the parentheses, when the INITAUTO compiler option is in effect.
Otherwise, it is not defined.

INLINE | NOINLINE
Category

Optimization and tuning

Pragma equivalent

#pragma inline, #pragma noinline

#pragma options (inline), #pragma options (noinline)

Purpose

Attempts to inline functions instead of generating calls to those functions, for
improved performance.

When the INLINE compiler option is in effect, the compiler places the code for
selected subprograms at the point of call; this is called inlining. It eliminates the
linkage overhead and exposes the entire inlined subprogram for optimization by
the global optimizer.

When the NOINLINE compiler option is in effect, the compiler generates calls to
functions instead of inlining functions.

Chapter 2. Compiler options 73

Syntax

►►
NOINL
INL ►◄

Defaults

NOINLINE

If OPT is in effect, the default is INLINE.

Usage

The INLINE compiler option has the following effects:
v The compiler invokes the compilation unit inliner to perform inlining of

functions within the current compilation unit.
v If the compiler inlines all invocations of a static subprogram, it removes the

non-inlined instance of the subprogram.
v If the compiler inlines all invocations of an externally visible subprogram, it

does not remove the non-inlined instance of the subprogram. This allows callers
who are outside of the current compilation unit to invoke the non-inlined
instance.

You can specify the INLINE | NOINLINE option on the invocation line and in the
#pragma options preprocessor directive. When you use both methods at the same
time, the compiler merges the options according to the following rules:
v If the NOINLINE option is specified on the invocation line and the #pragma

options(inline) directive is used, the compiler will behave as if the INLINE
option is specified.

v If the INLINE option is specified on the invocation line and the #pragma
options(noinline) directive is used, the compiler will behave as if the INLINE
option is specified.

For example, because you typically do not want to inline your subprograms when
you are developing a program, you can use the #pragma options(noinline)
directive. When you want to inline your subprograms, you can override the
#pragma options(noinline) by specifying INLINE on the invocation line rather
than by editing your source program. The following example illustrates these rules.

Source file:
#pragma options(noinline)

Invocation line:
INLINE

Result:
INLINE

Notes:

1. When you specify the INLINE compiler option, a commentis generated in your
object module to aid you in diagnosing your program.

2. Specify the LIST or SOURCE compiler option to redirect the output from the
INLINE option.

74 User's Guide

3. If you specify NOINLINE, no subprograms will be inlined even if you have
#pragma inline directives in your code.

4. If you specify INLINE, subprograms may not be inlined or inline other
subprograms when COMPACT is specified (either directly or via #pragma
option_override). Generate and check the inline report to determine the final
status of inlining. The inlining may not occur when OPT(0) is specified via the
#pragma option_override.

IPA effects

If you specify the INLINE option on the IPA link step, it has the following effects:
v The IPA link step invokes the IPA inliner, which inlines functions in the entire

program.
v The IPA link step uses #pragma inline | noinline directive information and

inline subprogram specifier information from the IPA compile step for source
program inlining control. Specifying the INLINE option on the IPA compile step
has no effect on IPA link step inlining processing.
You can use the IPA Link control file inline and noinline directives to explicitly
control the inlining of subprograms on the IPA link step. These directives
override IPA compile step #pragma inline | noinline directives and inline
subprogram specifiers.

v If the IPA link step inlines all invocations of a subprogram, it removes the
non-inlined instance of the subprogram, unless the subprogram entry point was
exported using a #pragma export directive, or was retained using the IPA Link
control file retain directive. IPA Link processes static subprograms and
externally visible subprograms in the same manner.

The IPA inliner has the inlining capabilities of the compilation unit inliner. In
addition, the IPA inliner detects complex recursion, and may inline it.

Predefined macros

None.

IPA | NOIPA
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Enables or customizes a class of optimizations known as interprocedural analysis
(IPA).

Syntax

Chapter 2. Compiler options 75

►►
NOIPA
IPA

▼

,

(NOLINK | LINK
COM|NOCOM
LEVEL (0)

(1)
(2)

CONTROL | NOCONTROL
(fileid)

DUP | NODUP
ER | NOER
LIST | NOLIST
MAP | NOMAP
NCAL | NONCAL
UPCASE | NOUPCASE

►◄

Defaults

NOIPA

Parameters

IPA compile and link step suboptions

LEVEL(0|1|2)
Indicates the level of IPA optimization that the IPA link step should
perform after it links the object files into the call graph.

If you specify LEVEL(0), IPA performs subprogram pruning and program
partitioning only.

If you specify LEVEL(1), IPA performs all of the optimizations that it does
at LEVEL(0), as well as subprogram inlining and global variable coalescing.
IPA performs more precise alias analysis for pointer dereferences and
subprogram calls.

Under IPA Level 1, many optimizations such as constant propagation and
pointer analysis are performed at the intraprocedural (subprogram) level. If
you specify LEVEL(2), IPA performs specific optimizations across the entire
program, which can lead to significant improvement in the generated code.

The compiler option OPTIMIZE that you specify on the IPA link step
controls subsequent optimization for each partition during code generation.
Regardless of the optimization level you specified during the IPA compile
step, you can modify the level of IPA optimization, regular code generation
optimization, or both, on the IPA link step.

The default is IPA(LEVEL(1)).

IPA compile step suboptions

NOLINK
IPA(NOLINK) invokes the IPA compile step. (NOLINK is the default.)

COMPRESS | NOCOMPRESS
Indicates that the IPA object information is compressed to significantly
reduce the size of the IPA object file.

The default is IPA(COMPRESS). The abbreviations are
IPA(COM|NOCOM).

76 User's Guide

LIST | NOLIST
Indicates whether the compiler saves information about source line
numbers in the IPA object file.

Refer to “LIST | NOLIST” on page 83 for information about the effect of
this suboption on the IPA link step. Refer also to “IPA considerations” on
page 7.

The default is IPA(NOLIST). The abbreviations are IPA(LIS|NOLIS). If you
specify the LIST option, it overrides the IPA(NOLIST) option.

IPA link step suboptions

LINK
IPA(LINK) invokes the IPA link step.

Only the following IPA suboptions affect the IPA link step. If you specify
other IPA suboptions, they are ignored.

CONTROL[(fileid)] | NOCONTROL[(fileid)]
Specifies whether a file that contains IPA directives is available for
processing. You can specify an optional fileid. If you specify both
IPA(NOCONTROL(fileid)) and IPA(CONTROL), in that order, the IPA link
step resolves the option to IPA(CONTROL(fileid)).

The default fileid is DD:IPACNTL if you specify the IPA(CONTROL) option.
The default is IPA(NOCONTROL).

For more information about the IPA link step control file, see “IPA link step
control file” on page 186.

DUP | NODUP
Indicates whether the IPA link step writes a message and a list of duplicate
symbols to the console.

The default is IPA(DUP).

ER | NOER
Indicates whether the IPA link step writes a message and a list of
unresolved symbols to the console.

The default is IPA(NOER).

MAP | NOMAP
Specifies that the IPA link step will produce a listing. The listing contains a
Prolog and the following sections:
v Object File Map
v Compiler Options Map
v Global Symbols Map (which may or may not appear, depending on how

much global coalescence was done during optimization)
v Partition Map for each partition
v Source File Map

The default is IPA(NOMAP).

See “Using the IPA link step listing” on page 156 for more information.

NCAL | NONCAL
Indicates whether the IPA link step performs an automatic library search to
resolve references in files that the IPA compile step produces. Also
indicates whether the IPA link step performs library searches to locate an
object file or files that satisfy unresolved symbol references within the
current set of object information.

Chapter 2. Compiler options 77

This suboption controls both explicit searches triggered by the LIBRARY
IPA Link control statement, and the implicit SYSLIB search that occurs at
the end of IPA Link input processing.

To help you remember the difference between NCAL and NONCAL, you
may think of NCAL as "nocall" and NONCAL as "no nocall", (or "call").

The default is IPA(NONCAL).

UPCASE | NOUPCASE
Determines whether the IPA link step makes an additional automatic
library call pass for SYSLIB if unresolved references remain at the end of
standard IPA Link processing. Symbol matching is not case sensitive in this
pass.

This suboption provides support for linking assembly language object
routines, without forcing you to make source changes. The preferred
approach is to add #pragma map definitions for these symbols, so that the
correct symbols are found during normal IPA Link automatic library call
processing.

The default is IPA(NOUPCASE). The abbreviations are IPA(UPC|NOUPC).

Predefined macros

None.

KEYWORD | NOKEYWORD
Category

Language element control

Pragma equivalent

None.

Purpose

Controls whether the specified name is treated as a keyword or an identifier
whenever it is in your source code.

When the KEYWORD compiler option is in effect, the compiler treats the specified
name as a keyword.

When the NOKEYWORD compiler option is in effect, the compiler treats the
specified name as an identifier.

Syntax

►► ▼

,
KEYWORD
NOKEYWORD (name) ►◄

Defaults

By default, all of the built-in keywords defined in the C language standard are
reserved as keywords.

78 User's Guide

Parameters

name
The name of a keyword. This suboption is case-sensitive.

Usage

You can use NOKEYWORD(name) to disable built-in keywords, and use
KEYWORD(name) to reinstate those keywords.

This option can be used with the following C keywords:
v asm
v typeof

Note: asm is not reserved as a keyword at the stdc89 or stdc99 language level.

Predefined macros

The following predefined macros are set using the KEYWORD | NOKEYWORD
option:
v __BOOL__ is undefined when the NOKEYWORD(bool) is in effect.
v __IBM__TYPEOF__ is predefined to 1 when the KEYWORD(typeof) is in effect.

LANGLVL
Category

Language element control

Pragma equivalent

#pragma langlvl

Purpose

Determines whether source code and compiler options should be checked for
conformance to a specific language standard, or subset or superset of a standard.

Syntax

Category: Language element control

►► ▼

,
EXTENDED

LANG (ANSI)
COMMONC
EXTC89
EXTC99
EXTC1X
SAA
SAAL2
STDC89
STDC99
feature_suboption

►◄

Chapter 2. Compiler options 79

Defaults

LANGLVL(EXTENDED)

Parameters

The following language levels are supported:

ANSI
Use it if you are compiling new or ported code that is ISO C compliant. It
indicates language constructs that are defined by ISO. Some non-ANSI stub
routines will exist even if you specify LANGLVL(ANSI), for compatibility with
previous releases. The macro __ANSI__ is defined as 1. It is intended to ensure
that the compilation conforms to the ISO C standard.

Note: When you specify LANGLVL(ANSI), the compiler can still read and
analyze the _Packed keyword. If you want to make your code purely ANSI,
you should redefine _Packed in a header file as follows:
#ifdef __ANSI__

#define _Packed
#endif

The compiler will now see the _Packed attribute as a blank when
LANGLVL(ANSI) is specified at compile time, and the language level of the
code will be ANSI.

COMMONC
It indicates language constructs that are defined by XPG, many of which
LANGLVL(EXTENDED) already supports. LANGLVL(ANSI) and
LANGLVL(EXTENDED) do not support the following, but
LANGLVL(COMMONC) does:
v Unsignedness is preserved for standard integral promotions (that is,

unsigned char is promoted to unsigned int)
v Trigraphs within literals are not processed
v sizeof operator is permitted on bit fields
v Bit fields other than int are tolerated, and a warning message is issued
v Macro parameters within quotation marks are expanded
v The empty comment in a subprogram-like macro is equivalent to the

ANSI/ISO token concatenation operator

The macro __COMMONC__ is defined as 1 when you specify
LANGLVL(COMMONC).

If you specify LANGLVL(COMMONC), the ANSIALIAS option is
automatically turned off. If you want ANSIALIAS turned on, you must
explicitly specify it.

Note: The option ANSIALIAS assumes code that supports ANSI. Using
LANGLVL(COMMONC) and ANSIALIAS together may have undesirable
effects on your code at a high optimization level. See “ANSIALIAS |
NOANSIALIAS” on page 24 for more information.

EXTC89
Indicates language constructs that are defined by the ISO C89 standard, plus
additional orthogonal language extensions that do not alter the behavior of this
standard.

80 User's Guide

Note: The unicode literals are enabled under the EXTC89 language level, and
disabled under the strictly-conforming language levels. When the unicode
literals are enabled, the macro __IBM_UTF_LITERAL is predefined to 1.
Otherwise, this macro is not predefined.

EXTC99
Indicates language constructs that are defined by the ISO C99 standard, plus
additional orthogonal language extensions that do not alter the behavior of the
standard.

Note: The unicode literals are enabled under the EXTC99 language level, and
disabled under the strictly-conforming language levels. When the unicode
literals are enabled, the macro __IBM_UTF_LITERAL is predefined to 1.
Otherwise, this macro is not predefined.

EXTC1X
Compilation is based on the C11 standard, invoking all the currently supported
C11 features and other implementation-specific language extensions. For more
information about the currently supported C11 features, see Extensions for C11
compatibility in Enterprise Metal C for z/OS Language Reference.

Note: IBM supports selected features of C11. IBM will continue to develop and
implement the features of this standard. The implementation of the language
level is based on IBM's interpretation of the standard. Until IBM's
implementation of all the C11 features is complete, including the support of a
new C11 standard library, the implementation may change from release to
release. IBM makes no attempt to maintain compatibility, in source, binary, or
listings and other compiler interfaces, with earlier releases of IBM's
implementation of the C11 features.

EXTENDED
It indicates all language constructs are available with Enterprise Metal C for
z/OS. It enables extensions to the ISO C standard. The macro __EXTENDED__
is defined as 1.

Note: Under Enterprise Metal C for z/OS, the unicode literals are enabled
under the EXTENDED language level, and disabled under the
strictly-conforming language levels. When the unicode literals are enabled, the
macro __IBM_UTF_LITERAL is predefined to 1. Otherwise, this macro is not
predefined.

SAA
Indicates language constructs that are defined by SAA.

SAAL2
Indicates language constructs that are defined by SAA Level 2.

STDC89
Indicates language constructs that are defined by the ISO C89 standard. This
suboption is synonymous with LANGLVL(ANSI).

STDC99
Indicates language constructs that are defined by the ISO C99 standard.

The following feature suboptions are available:

LIBEXT | NOLIBEXT
Specifying this option affects the headers provided by the C runtime library,
which in turn control the availability of general ISO runtime extensions. In
addition, it also defines the following macros and sets their values to 1:

Chapter 2. Compiler options 81

v _MI_BUILTIN (this macro controls the availability of machine built-in
instructions.

v _EXT (this macro controls the availability of general ISO runtime extensions)

The default is LANG(LIBEXT). However, LANG(LIBEXT) is implicitly enabled
by LANG(COMMONC | SAA | SAAL2 | EXTENDED | EXTC89 | EXTC99).

LONGLONG | NOLONGLONG
This option controls the availability of pre-C99 long long integer types for
your compilation. The default is LANG(LONGLONG).

TEXTAFTERENDIF | NOTEXTAFTERENDIF
Specifies whether to suppress the warning message that is emitted when you
are porting code from a compiler that allows extra text after #endif or #else to
the Enterprise Metal C for z/OS compiler. The default option is
LANGLVL(NOTEXTAFTERENDIF), indicating that a message is emitted if
#else or #endif is followed by any extraneous text.

Usage

The LANGLVL option defines a macro that specifies a language level. You must
then include this macro in your code to force conditional compilation; for example,
with the use of #ifdef directives. You can write portable code if you correctly code
the different parts of your program according to the language level. You use the
macro in preprocessor directives in header files.

Note: The following list shows ISO C99 language constructs unavailable with
LANGLVL(EXTENDED) or LANGLVL(EXTC89):
v inline keyword
v restrict keyword
v C++ style comments

Unsuffixed integer literals are handled differently under ISO C99 than they are for
LANGLVL(EXTENDED) or LANGLVL(EXTC89). Unsuffixed integer literals with
values greater than INT_MAX, have a long long type under ISO C99 and an
unsigned int type under LANGVL(EXTENDED) or LANGLVL(EXTC89).

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

Predefined macros

For the list of predefined macros related to language levels, see Macros related to
language levels in Enterprise Metal C for z/OS Language Reference.

LIBANSI | NOLIBANSI
Category

Optimization and tuning

Pragma equivalent

#pragma options (libansi), #pragma options (nolibansi)

82 User's Guide

Purpose

Indicates whether or not functions with the name of an ANSI C library function
are in fact ANSI C library functions and behave as described in the ANSI standard.

When LIBANSI is in effect, the optimizer can generate better code because it will
know about the behavior of a given function, such as whether or not it has any
side effects.

Syntax

►►
NOLIB
LIB ►◄

Defaults

NOLIBANSI

Usage

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

The LIBANSI option has the same effect on the IPA compile step as it does for
normal compilation.

The LIBANSI option will be in effect for the IPA link step unless the NOLIBANSI
option is specified.

The LIBANSI option that you specify on the IPA link step will override the
LIBANSI option that you specify on the IPA compile step. The LIBANSI option
that you specify on the IPA link step is shown in the IPA Link listing Compile
Option Map for reference.

Predefined macros

None.

LIST | NOLIST
Category

Listings, messages and compiler information

Pragma equivalent

None.

Purpose

Produces a compiler listing that includes a list of options and the compiler version.

Chapter 2. Compiler options 83

Syntax

►►
NOLIS
LIS

(Sequential filename)
Partitioned data set
Partitioned data set (member)
z/OS UNIX System Services filename
z/OS UNIX System Services directory

►◄

Defaults

NOLIST

Parameters

Sequential filename
Specifies the sequential data set file name for the compiler listing.

Partitioned data set
Specifies the partitioned data set for the compiler listing.

Partitioned data set (member)
Specifies the partitioned data set (member) for the compiler listing.

z/OS UNIX System Services filename
Specifies the z/OS UNIX System Services file name for the compiler listing.

z/OS UNIX System Services directory
Specifies the z/OS UNIX System Services directory for the compiler listing.

Usage

When the LIST compiler option is in effect, the compiler is instructed to generate a
listing of options and the compiler version in the compiler listing.

LIST(filename) places the compiler listing in the specified file. If you do not specify
a file name for the LIST option, the compiler uses the SYSCPRT ddname if you
allocated one. Otherwise, the compiler generates a file name as follows:
v If you are compiling a data set, the compiler uses the source file name to form

the name of the listing data set. The high-level qualifier is replaced with the
userid under which the compiler is running, and .LIST is appended as the
low-level qualifier.

v If you are compiling a z/OS UNIX file, the compiler stores the listing in a file
that has the name of the source file with a .lst extension. If you are linking
with IPA and generating a z/OS UNIX executable, the name is instead based on
the name of the executable.

The NOLIST option optionally takes a file name suboption. This file name then
becomes the default. If you subsequently use the LIST option without a file name
suboption, the compiler uses the file name that you specified in the earlier
NOLIST. For example, the following specifications have the same effect:
metalc -Wc,"NOLIST(hello.list)" LIST

metalc -Wc,"LIST(hello.list)"

If you specify data set names in a C program, with the SOURCE or LIST options,
all the listing sections are combined into the last data set name specified.

84 User's Guide

Notes:

1. If you use the following form of the command in a JES3 batch environment
where xxx is an unallocated data set, you may get undefined results.
LIST(xxx)

2. Statement line numbers exceeding 99999 will wrap back to 00000 for the
generated assembly listing for the C source file. This may occur when the
compiler LIST option is used.

IPA effects

If you specify the LIST option on the IPA compile step, the compiler saves
information about the source file and line numbers in the IPA object file. This
information is available during the IPA link step for use by the LIST option.

Predefined macros

None.

LOCALE | NOLOCALE
Category

Object code control

Pragma equivalent

None.

Purpose

Specifies the locale to be used by the compiler as the current locale throughout the
compilation unit.

With the LOCALE compiler option, you can specify the locale you want to use.

When the NOLOCALE compiler option is in effect, the compiler uses the default
code page, which is IBM-1047.

Syntax

►►
NOLOC
LOC

(name)
►◄

Defaults

NOLOCALE

When compiling in the z/OS UNIX System Services Shell environment, the default
is LOCALE(POSIX). The metalc utility picks up the locale value of the
environment using setlocale(LC_ALL,NULL)). Because the compiler runs with the
POSIX(OFF) option, categories that are set to C are changed to POSIX.

Chapter 2. Compiler options 85

Parameters

name
Indicates the name of the locale to be used by the compiler at compile time. If
you omit name, the compiler uses the current default locale in the environment.
If name does not represent a valid locale name, a warning message is emitted
and NOLOCALE is used.

Usage

You can specify LOCALE on the command line or in the PARMS list in the JCL.

If you specify the LOCALE option, the locale name and the associated code set
appear in the header of the listing. A locale name is also generated in the object
module.

The LC_TIME category of the current locale controls the format of the time and the
date in the compiler-generated listing file. The identifiers that appear in the tables
in the listing file are sorted as specified by the LC_COLLATE category of the locale
specified in the option.

Note: The formats of the predefined macros __DATE__, __TIME__, and
__TIMESTAMP__ are not locale-sensitive.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

The LOCALE option controls processing only for the IPA step for which you
specify it.

During the IPA compile step, the compiler converts source code using the code
page that is associated with the locale specified by the LOCALE compile-time
option. As with non-IPA compilations, the conversion applies to identifiers, literals,
and listings. The locale that you specify on the IPA compile step is recorded in the
IPA object file.

You should use the same code page for IPA compile step processing for all of your
program source files. This code page should match the code page of the runtime
environment. Otherwise, your application may not run correctly.

The locale that you specify on the IPA compile step does not determine the locale
that the IPA link step uses. The LOCALE option that you specify on the IPA link
step is used for the following:
v The encoding of the message text and the listing text.
v Date and time formatting in the Source File Map section of the listing and in the

text in the object comment string that records the date and time of IPA link step
processing.

v Sorting of identifiers in listings. The IPA link step uses the sort order associated
with the locale for the lists of symbols in the Inline Report (Summary), Global
Symbols Map, and Partition Map listing sections.

If the code page you used for a compilation unit for the IPA compile step does not
match the code page you used for the IPA link step, the IPA link step issues an
informational message.

86 User's Guide

If you specify the IPA(MAP) option, the IPA link step displays information about
the LOCALE option, as follows:
v The Prolog section of the listing displays the LOCALE or NOLOCALE option. If

you specified the LOCALE option, the Prolog displays the locale and code set
that are in effect.

v The Compiler Options Map listing section displays the LOCALE option active
on the IPA compile step for each IPA object. If you specified conflicting code sets
between the IPA Compile and IPA link steps, the listing includes a warning
message after each Compiler Options Map entry that displays a conflict.

v The Partition Map listing section shows the current LOCALE option.

Predefined macros
v __CODESET__ is defined to the name of the compile-time code set. The compiler

uses the runtime function nl_langinfo(CODESET) to determine the name of the
compile-time code set. If you do not use the LOCALE compile option, the macro
is undefined.

v __LOCALE__ is defined to the name of the compile-time locale. If you specified
LOCALE(string literal), the compiler uses the runtime function
setlocale(LC_ALL,"string literal") to determine the name of the compile-time
locale. If you do not use the LOCALE compile option, the macro is undefined.

LONGLONG | NOLONGLONG
Category

Language element control

Pragma equivalent

#pragma options [no]longlong

Purpose

Controls whether to allow the pre-C99 long long integer types in your programs.

Syntax

►►
LONGLONG
NOLONGLONG ►◄

Defaults

LONGLONG

Usage

This option takes effect when the LANGLVL(EXTENDED | STDC89 | EXTC89) option is
in effect. It is not valid when the LANGLVL(STDC99 | EXTC99) option is in effect,
because the long long support provided by this option is incompatible with the
semantics of the long long types mandated by the C99 standard.

IPA effects

None.

Chapter 2. Compiler options 87

Predefined macros

_LONG_LONG is defined to 1 when long long data types are available; otherwise,
it is undefined.

LONGNAME | NOLONGNAME
Category

Object code control

Pragma equivalent

#pragma longname, #pragma nolongname You can use the #pragma preprocessor
directive to override the default values for compiler options. However, for
LONGNAME | NOLONGNAME, the compiler options override the #pragma
preprocessor directives.

Purpose

Provides support for external names of mixed case and up to 1024 characters long.

When the LONGNAME compiler option is in effect, the compiler generates
untruncated and mixed case external names in the assembler source produced by
the compiler.

When the NOLONGNAME compiler option is in effect:
v The compiler generates truncated and uppercase names in the assembler source.
v Functions that are given truncated and uppercase names.
v The compiler truncates all the external names to 8 characters.

Syntax

►►
NOLO
LO ►◄

Defaults

NOLONGNAME

Usage

If you use #pragma map to associate an external name with an identifier, the
compiler generates the external name in the assembler source. That is, #pragma map
has the same behavior for the LONGNAME and NOLONGNAME compiler
options. Also, #pragma csect has the same behavior for the LONGNAME and
NOLONGNAME compiler options.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

88 User's Guide

IPA effects

LONGNAME is always in effect even if you specify NOLONGNAME. Either the
LONGNAME compiler option or the #pragma longname preprocessor directive is
required for the IPA compile step.

The IPA link step ignores this option if you specify it, and uses the LONGNAME
option for all partitions it generates.

Predefined macros

__LONGNAME__ is predefined to 1 when the LONGNAME compiler option is in
effect.

LP64 | ILP32
Category

Object code control

Pragma equivalent

None.

Purpose

Selects either AMODE 64 or AMODE 31 mode.

When the LP64 compiler option is in effect, the compiler generates AMODE 64
code using the z/Architecture 64-bit instructions.

When the ILP32 compiler option is in effect, the compiler generates AMODE 31
code. This is the default.

Note: AMODE is the addressing mode of the program code generated by the
compiler. In AMODE 64 and AMODE 31, 64 and 31 refer to the range of addresses
that can be accessed (in other words 64-bits and 31-bits are used to form the
address respectively). When there is no ambiguity, we will refer to these as 64-bit
mode and 31-bit mode. Refer to the information that follows for further
information on the data model.

Syntax

►►
ILP32
LP64 ►◄

Defaults

ILP32

Usage

LP64 and ILP32 are mutually exclusive. If they are specified multiple times, the
compiler will take the last one.

Chapter 2. Compiler options 89

LP64 and ILP32 refer to the data model used by the language. "I" is an
abbreviation that represents int type, "L" represents long type, and "P" represents
the pointer type. 64 and 32 refer to the size of the data types. When the ILP32
option is used, int, long and pointers are 32-bit in size. When LP64 is used, long
and pointer are 64-bit in size; int remains 32-bit. The addressing mode used by
LP64 is AMODE 64, and by ILP32 is AMODE 31. In the latter case, only 31 bits
within the pointer are taken to form the address. For the sake of conciseness, the
terms 31-bit mode and ILP32, will be used interchangeably in this document when
there is no ambiguity. The same applies to 64-bit mode and LP64.

The LP64 option requires ARCH(5) or higher. ARCH(5) and GOFF are the default
settings for LP64 if you don't explicitly override them. If you explicitly specify
NOGOFF or specify an architecture level lower than 5, the compiler issues a
warning message, ignore NOGOFF, and raise the architecture level to 5.

Note: ARCH(5) specifies the 2064 hardware models.

In 31-bit mode, the size of long and pointers is 4 bytes and the size of wchar_t is 2
bytes. Under LP64, the size of long and pointer is 8 bytes and the size of wchar_t
is 4 bytes. The size of other intrinsic datatypes remain the same between 31-bit
mode and LP64. Under LP64, the type definition for size_t changes to long, and
the type definition for ptrdiff_t changes to unsigned long. The following tables
give the size of the intrinsic types:

Table 17. Size of intrinsic types in 64–bit mode

Type Size (in bits)

char, unsigned char, signed char 8

short, short int, unsigned short, unsigned
short int, signed short, signed short int

16

int, unsigned int, signed int 32

long, long int, unsigned long, unsigned long
int, signed long, signed long int

64

long long, long long int, unsigned long long,
unsigned long long int, signed long long,
signed long long int

64

pointer 64

Table 18. Size of intrinsic types in 31–bit mode

Type Size (in bits)

char, unsigned char, signed char 8

short, short int, unsigned short, unsigned
short int, signed short, signed short int

16

int, unsigned int, signed int 32

long, long int, unsigned long, unsigned long
int, signed long, signed long int

32

long long, long long int, unsigned long long,
unsigned long long int, signed long long,
signed long long int

64

pointer 32

90 User's Guide

The __ptr32 pointer qualifier is intended to make the process of porting
applications from ILP32 to LP64 easier. Use this qualifier in structure members to
minimize the changes in the overall size of structures. Note that these pointers
cannot refer to objects above the 31-bit address line (also known as "the bar"). In
general, the program has no control over the address of a variable; the address is
assigned by the implementation. It is up to the programmer to make sure that the
use of __ptr32 is appropriate within the context of the program's logic.

Note: The long and wchar_t data types also change in size.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

The IPA compile step generates information for the IPA link step.

The IPA link step accepts the LP64 | ILP32 option, but ignores it.

The IPA link step will check that all objects have a consistent data model, either
ILP32 or LP64. It checks both IPA object modules and non-IPA object modules. If
the IPA link step finds a mixture of addressing modes among the object files, the
compiler issues a diagnostic message and ends the compilation.

Predefined macros

Macros __64BIT__, _LP64, and __LP64__ are defined to 1 when the LP64 compiler
option is in effect; otherwise, the macro _ILP32 is predefined to 1.

LSEARCH | NOLSEARCH
Category

Compiler input

Pragma equivalent

None.

Purpose

Specifies the directories or data sets to be searched for user include files.

When the LSEARCH compiler option is in effect, the preprocessor looks for the
user include files in the specified directories or data sets.

When the NOLSEARCH compiler option is in effect, the preprocessor only
searches those data sets that are specified in the USERLIB DD statement. A
NOLSEARCH option cancels all previous LSEARCH specifications, and the
compiler uses any LSEARCH options that follow it.

Chapter 2. Compiler options 91

Syntax

►► ▼

NOLSE
,

LSE (path) ►◄

Defaults

NOLSEARCH

Parameters

path
Specifies any of the following:
v The name of a partitioned or sequential data set that contains user include

files.
v A z/OS UNIX System Services file system path that contains user include

files.
v A search path that is more complex:

►►

▼

NOLSE
LSE

,

(opt)
//

►◄

You must use the double slashes (//) to specify data set library searches when
you specify the OE compiler option. (You may use them regardless of the OE
option).

The USERLIB ddname is considered the last suboption for LSEARCH, so that
specifying LSEARCH (X) is equivalent to specifying LSEARCH
(X,DD:USERLIB).

Parts of the #include filename are appended to each LSEARCH opt to search
for the include file. opt has the format:

►► ▼

▼

▼

,

qualifier
' .+ '

.*
+

' * '
,

directory
./
../
/

DD:name
,

(fname.suffix)=LIB(subopt)

►◄

92 User's Guide

In this syntax diagram, opt specifies one of the following:
v The name of a partitioned or sequential data set that contains user include

files
v A z/OS UNIX file system path name that should be searched for the include

file. You can also use ./ to specify the current directory and ../ to specify the
parent directory for your z/OS UNIX file.

v A DD statement for a sequential data set or a partitioned data set. When you
specify a ddname in the search and the include file has a member name, the
member name of the include file is used as the name for the DD: name search
suboption, for example:
LSEARCH(DD:NEWLIB)
#include "a.b(c)"

The resulting file name is DD:NEWLIB(C).
v A specification of the form (fname.suffix) = (subopt,subopt,...) where:

– fname is the name of the include file, or *
– suffix is the suffix of the include file, or *
– subopt indicates a subpath to be used in the search for the include files

that match the pattern of fname.suffix. There should be at least one subopt.
The possible values are:
- LIB([pds,...]) where each pds is a partitioned data set name. They are

searched in the same order as they are specified.
There is no effect on the search path if no pds is specified, but a
warning is issued.

- LIBs are cumulative; for example, LIB(A),LIB(B) is equivalent to LIB(A,
B).

- NOLIB specifies that all LIB(...) previously specified for this pattern
should be ignored at this point.

When the #include filename matches the pattern of fname.suffix, the search
continues according to the subopts in the order specified. An asterisk (*) in
fname or suffix matches anything. If the compiler does not find the file, it
attempts other searches according to the remaining options in LSEARCH.

Usage

When you specify more than one LSEARCH option, the compiler uses all the
directories or data sets in these LSEARCH options to find the user include files.

The #include "filename" format of the #include preprocessor directive indicates
user include files. See “Using include files” on page 173 for a description of the
#include preprocessor directive.

Note: If the filename in the #include directive is in absolute form, the compiler
does not perform a search. See “Determining whether the file name is in absolute
form” on page 178 for more details on absolute #include filename.

For further information on search sequences, see “Search sequences for include
files” on page 182.

When specifying z/OS UNIX library searches, do not put double slashes at the
beginning of the LSEARCH opt . Use pathnames separated by slashes (/) in the
LSEARCH opt for a z/OS UNIX library. When the LSEARCH opt does not start
with double slashes, any single slash in the name indicates a z/OS UNIX library. If

Chapter 2. Compiler options 93

you do not have path separators (/), then setting the OE compile option on
indicates that this is a z/OS UNIX library; otherwise the library is interpreted as a
data set. See “Using SEARCH and LSEARCH” on page 180 for additional
information on z/OS UNIX files.

Example: The opt specified for LSEARCH is combined with the filename in
#include to form the include file name:
LSEARCH(/u/mike/myfiles)
#include "new/headers.h"

The resulting z/OS UNIX file name is /u/mike/myfiles/new/headers.h.

Use an asterisk (*) or a plus sign (+) in the LSEARCH opt to specify whether the
library is a sequential or partitioned data set.

When you want to specify a set of PDSs as the search path, you add a period
followed by a plus sign (.+) at the end of the last qualifier in the opt. If you do not
have any qualifier, specify a single plus sign (+) as the opt. The opt has the
following syntax for specifying partitioned data set:

►►
'

▼

+
,

qualifier
.+

'
►◄

where qualifier is a data set qualifier.

Start and end the opt with single quotation marks (') to indicate that this is an
absolute data set specification. Single quotation marks around a single plus sign
(+) indicate that the filename that is specified in #include is an absolute partitioned
data set.

When you do not specify a member name with the #include directive, for
example, #include "PR1.MIKE.H", the PDS name for the search is formed by
replacing the plus sign with the following parts of the filename of the #include
directive:
v For the PDS file name:

1. All the paths and slashes (slashes are replaced by periods)
2. All the periods and qualifiers after the left-most qualifier

v For the PDS member name, the left-most qualifier is used as the member name

See the first example in Table 19 on page 96.

However, if you specified a member name in the filename of the #include directive,
for example, #include "PR1.MIKE.H(M1)", the PDS name for the search is formed
by replacing the plus sign with the qualified name of the PDS. See the second
example in Table 19 on page 96.

See “Forming data set names with LSEARCH | SEARCH options” on page 175 for
more information on forming PDS names.

94 User's Guide

Note: To specify a single PDS as the opt, do not specify a trailing asterisk (*) or
plus sign (+). The library is then treated as a PDS but the PDS name is formed by
just using the leftmost qualifier of the #include filename as the member name. For
example:
LSEARCH(AAAA.BBBB)
#include "sys/ff.gg.hh"

Resulting PDS name is
userid.AAAA.BBBB(FF)

Also see the third example in Table 19 on page 96.

Predefined macros

None.

Examples

To search for PDS or PDSE files when you have coded your include files as
follows:
#include "sub/fred.h"
#include "fred.inl"

You specified LSEARCH as follows:
LSEARCH(USER.+,’USERID.GENERAL.+’)

The compiler uses the following search sequence to look for your include files:
1. First, the compiler looks for sub/fred.h in this data set:

USERID.USER.SUB.H(FRED)

2. If that PDS member does not exist, the compiler looks in the data set:
USERID.GENERAL.SUB.H(FRED)

3. If that PDS member does not exist, the compiler looks in DD:USERLIB, and
then checks the system header files.

4. Next, the compiler looks for fred.inl in the data set:
USERID.USER.INL(FRED)

5. If that PDS member does not exist, the compiler will look in the data set:
USERID.GENERAL.INL(FRED)

6. If that PDS member does not exist, the compiler looks in DD:USERLIB, and
then checks the system header files.

The compiler forms the search path for z/OS UNIX files by appending the path
and name of the #include file to the path that you specified in the LSEARCH
option.

Example 1: See the following example.

You code #include "sub/fred.h" and specify:
LSEARCH(/u/mike)

The compiler looks for the include file /u/mike/sub/fred.h .

Example 2: See the following example.

You specify your header file as #include "fred.h", and your LSEARCH option as:

Chapter 2. Compiler options 95

LSEARCH(/u/mike, ./sub)

The compiler uses the following search sequence to look for your include files:
1. The compiler looks for fred.h in /u/mike/fred.h.
2. If that z/OS UNIX file does not exist, the compiler looks in ./sub/fred.h.
3. If that z/OS UNIX file does not exist, the compiler looks in the libraries

specified on the USERLIB DD statement.
4. If USERLIB DD is not allocated, the compiler follows the search order for

system include files.

The following example shows you how to specify a PDS search path:

Table 19. Partitioned data set examples

include Directive LSEARCH option Result

#include "PR1.MIKE.H" LSEARCH('CC.+') 'CC.MIKE.H(PR1)'

#include "PR.KE.H(M1)" LSEARCH('CC.+') 'CC.PR.KE.H(M1)'

#include "A.B" LSEARCH(CC) userid.CC(A)

#include "A.B.D" LSEARCH(CC.+) userid.CC.B.D(A)

#include "a/b/dd.h" LSEARCH('CC.+') 'CC.A.B.H(DD)'

#include "a/dd.ee.h" LSEARCH('CC.+') 'CC.A.EE.H(DD)'

#include "a/b/dd.h" LSEARCH('+') 'A.B.H(DD)'

#include "a/b/dd.h" LSEARCH(+) userid.A.B.H(DD)

#include "A.B(C)" LSEARCH('D.+') 'D.A.B(C)'

When you want to specify a set of sequential data sets as the search path, you add
a period followed by an asterisk (.*) at the end of the last qualifier in the opt. If
you do not have any qualifiers, specify one asterisk (*) as the opt. The opt has the
following syntax for specifying a sequential data set:

►►
// '

▼

*
,

qualifier
. *

'
►◄

where qualifier is a data set qualifier.

Start and end the opt with single quotation marks (') to indicate that this is an
absolute data set specification. Single quotation marks (') around a single asterisk
(*) means that the file name that is specified in #include is an absolute sequential
data set.

The asterisk is replaced by all of the qualifiers and periods in the #include filename
to form the complete name for the search (as shown in the following table).

The following example shows you how to specify a search path for a sequential
data set:

96 User's Guide

Table 20. Sequential data set examples

include Directive LSEARCH option Result

#include "A.B" LSEARCH(CC.*) userid.CC.A.B

#include "a/b/dd.h" LSEARCH('CC.*') 'CC.DD.H'

#include "a/b/dd.h" LSEARCH('*') 'DD.H'

#include "a/b/dd.h" LSEARCH(*) userid.DD.H

Note: If the trailing asterisk is not used in the LSEARCH opt, then the specified
library is a PDS:
#include "A.B"
LSEARCH(’CC’)

Result is ’CC(A)’ which is a PDS.

MAKEDEP
Category

Compiler output

Pragma equivalent

None.

Purpose

Produces the dependency files that are used by the make utility for each source
file.

Note: This option is only supported using -q syntax. Specifying -qmakedep without
suboptions is equivalent to the -M option, but it behaves differently when specified
with a suboption. For more information about the -M option, see “Flag options
syntax” on page 226.

Syntax

►► -q makedep
= gcc

pponly

►◄

Defaults

Not applicable.

Parameters

gcc
Instructs the compiler to produce make dependencies file format with a single
make rule for all dependencies.

pponly
Instructs the compiler to produce only the make dependencies file without
generating an object file, with the same make file format as the format
produced with the gcc suboption.

Chapter 2. Compiler options 97

Usage

For each C source file specified on the command line, an output file is generated
with the same name as the object file and the suffix replaced with the suffix for the
make dependencies file. The default suffix for the make dependencies file is .u. It
can be customized using the usuffix attribute in the xlc utility configuration file.

The option only applies to C sources in z/OS UNIX files, because MVS data sets
do not have a time stamp required for make utility processing.

If the -o option is used to rename the object file, the output file uses the name you
specified on the -o option.

When -M or -qmakedep without suboption is specified, the description file contains
multiple make rules, one for each dependency. It has the general form:
file_name.o: file_name.suffix
file_name.o: include_file_name

When -qmakedep=gcc or -qmakedep=pponly is specified, the description file contains
a single make rule for all dependencies. It has the form:
file_name.o: file_name.suffix \
include_file_name

Include files are listed according to the search order rules for the #include
preprocessor directive. If an include file is not found, it is not added to the .u file,
but if the -MG flag option is used, it includes the missing file into the output file.
Files with no include statements produce output files containing one line that lists
only the input file name.

You can use the -qmakedep or -M option with the following flag options:

-MF <file_name>
Sets the name of the make dependencies file, where file_name is the file
name, full path, or partial path for the make dependencies file.

-MG When used with the -qmakedep=pponly option, -MG instructs the compiler to
include missing header files into the make dependencies file and suppress
diagnostic messages about missing header files.

-MT <target_name>
Sets the target to the <target_name> rather than the object file name.

-MQ <target_name>
-MQ is the same as -MT except that -MQ escapes any characters that have
special meaning in make.

For more information about the -MF, -MG, -MT, and -MQ options, see “Flag options
syntax” on page 226.

IPA effects

None.

Predefined macros

None.

98 User's Guide

Examples

To compile mysource.c and create an output file named mysource.u, enter:
metalc -c -qmakedep mysource.c

To compile foo_src.c and create an output file named mysource.u, enter:
metalc -c -qmakedep foo_src.c -MF mysource.u

To compile foo_src.c and create an output file named mysource.u in the deps/
directory, enter:
metalc -c -qmakedep foo_src.c -MF deps/mysource.u

To compile foo_src.c and create an object file named foo_obj.o and an output file
named foo_obj.u, enter:
metalc -c -qmakedep foo_src.c -o foo_obj.o

To compile foo_src.c and produce a dependency output file format with a single
make rule for all dependencies, enter:
metalc -c -qmakedep=gcc foo_src.c

To compile foo_src.c and produce only the dependency output file without
generating an object file, enter:
metalc -c -qmakedep=pponly foo_src.c

MARGINS | NOMARGINS
Category

Compiler input

Pragma equivalent

#pragma margins, #pragma nomargins

Purpose

Specifies, inclusively, the range of source column numbers that will be compiled.

When the MARGINS option is in effect, you can specify the columns in the input
record that are to be scanned for input to the compiler. The compiler ignores text
in the source input that does not fall within the range that is specified in the
MARGINS option.

When the NOMARGINS options is in effect, the entire input source record will be
scanned for input to the compiler.

Syntax

►►
MAR (m,n)
NOMAR ►◄

Defaults
v For fixed record format, the default option is MARGINS(1,72).
v For z/OS UNIX file system, the default for a regular compile is NOMARGINS.

Chapter 2. Compiler options 99

Parameters

m Specifies the first column of the source input that contains valid C code. The
value of m must be greater than 0 and less than 32761.

n Specifies the last column of the source input that contains valid C code. The
value of n must be greater than m and less than 32761. An asterisk (*) can be
assigned to n to indicate the last column of the input record. If you specify
MARGINS(9,*), the compiler scans from column 9 to the end of the record for
input source statements.

Usage

You can use the MARGINS and SEQUENCE compiler options together. The
MARGINS option is applied first to determine which columns are to be scanned.
The SEQUENCE option is then applied to determine which of these columns are
not to be scanned. If the SEQUENCE settings do not fall within the MARGINS
settings, the SEQUENCE option has no effect.

When a source (or include) file is opened, it initially gets the margins and sequence
specified on the command line (or the defaults if none was specified). You can
reset these settings by using #pragma margins or #pragma sequence at any point in
the file. When an #include file returns, the previous file keeps the settings it had
when it encountered the #include directive.

If the MARGINS option is specified along with the SOURCE option in a C
program, only the range specified on the MARGINS option is shown in the
compiler source listing.

Notes:

1. The MARGINS option does not reformat listings.
2. If your program uses the #include preprocessor directive to include Enterprise

Metal C for z/OS library header files and you want to use the MARGINS
option, you must ensure that the specifications on the MARGINS option does
not exclude columns 20 through 50. That is, the value of m must be less than
20, and the value of n must be greater than 50. If your program does not
include any Enterprise Metal C for z/OS library header files, you can specify
any setting you want on the MARGINS option when the setting is consistent
with your own include files.

Predefined macros

None.

Related information

For more information on related compiler options, see
v “SEQUENCE | NOSEQUENCE” on page 127
v “SOURCE | NOSOURCE” on page 134

MAXMEM | NOMAXMEM
Category

Optimization and tuning

100 User's Guide

Pragma equivalent

#pragma options (maxmem), #pragma options (nomaxmem)

Purpose

Limits the amount of memory used for local tables, and that the compiler allocates
while performing specific, memory-intensive optimizations, to the specified
number of kilobytes.

Syntax

►►
MAXM (size)
NOMAXM ►◄

Defaults

MAXMEM(*)

Parameters

size
The valid range for size is 0 to 2097152. You can use asterisk as a value for size
, MAXMEM(*), to indicate the highest possible value, which is also the default.
NOMAXMEM is equivalent to MAXMEM(*). Use the MAXMEM size suboption
if you want to specify a memory size of less value than the default.

Usage

If the memory specified by the MAXMEM option is insufficient for a particular
optimization, the compilation is completed in such a way that the quality of the
optimization is reduced, and a warning message is issued.

When a large size is specified for MAXMEM, compilation may be aborted because
of insufficient virtual storage, depending on the source file being compiled, the size
of the subprogram in the source, and the virtual storage available for the
compilation.

The advantage of using the MAXMEM option is that, for large and complex
applications, the compiler produces a slightly less-optimized object module and
generates a warning message, instead of terminating the compilation with an error
message of “insufficient virtual storage”.

Notes:

1. The limit that is set by MAXMEM is the amount of memory for specific
optimizations, and not for the compiler as a whole. Tables that are required
during the entire compilation process are not affected by or included in this
limit.

2. Setting a large limit has no negative effect on the compilation of source files
when the compiler needs less memory.

3. Limiting the scope of optimization does not necessarily mean that the resulting
program will be slower, only that the compiler may finish before finding all
opportunities to increase performance.

Chapter 2. Compiler options 101

4. Increasing the limit does not necessarily mean that the resulting program will
be faster, only that the compiler may be able to find opportunities to increase
performance.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

The IPA compile step generates information for the IPA link step.

The option value you specify on the IPA compile step for each IPA object file
appears in the IPA link step Compiler Options Map listing section.

If you specify the MAXMEM option on the IPA link step, the value of the option is
used. The IPA link step Prolog and Partition Map listing sections display the value
of the option.

If you do not specify the option on the IPA link step, the value that it uses for a
partition is the maximum MAXMEM value you specified for the IPA compile step
for any compilation unit that provided code for that partition. The IPA link step
Prolog listing section does not display the value of the MAXMEM option, but the
Partition Map listing section does.

Predefined macros

None.

MEMORY | NOMEMORY
Category

Compiler customization

Pragma equivalent

None.

Purpose

Improves compile-time performance by using a memory file in place of a
temporary work file, if possible.

Syntax

►►
MEM
NOMEM ►◄

Defaults

MEMORY

102 User's Guide

Usage

This option generally increases compilation speed, but you may require additional
memory to use it. If you use this option and the compilation fails because of a
storage error, you must increase your storage size or recompile your program
using the NOMEMORY option. For information on how to increase storage size,
see Setting the region size for applications.

IPA effects

The MEMORY option has the same effect on the IPA link step as it does on a
regular compilation. If the IPA link step fails due to an out-of-memory condition,
provide additional virtual storage. If additional storage is unavailable, specify the
NOMEMORY option.

Predefined macros

None.

METAL
Category

Object code control

Pragma equivalent

None.

Purpose

The METAL option is accepted and ignored to allow interoperability with the z/OS
XL C compiler.

Syntax

►► METAL ►◄

Defaults

METAL

Usage

Enterprise Metal C for z/OS does not support the NOMETAL option. If
NOMETAL is specified, the compiler issues an error for it.

Predefined macros
v __IBM_METAL__ is predefined to 1.
v __IBM_FAR_IS SUPPORTED__ is predefined to 1.

Chapter 2. Compiler options 103

NESTINC | NONESTINC
Category

Compiler input

Pragma equivalent

None.

Purpose

Specifies the number of nested include files to be allowed in your source program.

When the NESTINC compiler option is in effect, you can specify the maximum
limit of nested include files.

When the NONESTINC compiler option is in effect, you are specifying
NESTINC(255).

Syntax

►►
NEST (num)
NONEST ►◄

Defaults

NESTINC(255)

Parameters

num
You can specify a limit of any integer from 0 to SHRT_MAX, which indicates the
maximum limit, as defined in the header file LIMITS.H. To specify the
maximum limit, use an asterisk (*). If you specify an invalid value, the
compiler issues a warning message, and uses the default limit, which is 255.

Usage

If you use heavily nested include files, your program requires more storage to
compile.

Predefined macros

None.

OE | NOOE
Category

Compiler input

Pragma equivalent

None.

104 User's Guide

Purpose

Specifies the rules used when searching for files specified with #include directives.

Syntax

►►
NOOE
OE

(filename)
►◄

Defaults

NOOE

When compiling in the z/OS UNIX System Services Shell environment, the default
is OE.

Parameters

filename
Specifies the path that is used when searching for files specified with #include
directives.

Note: Diagnostics and listing information will refer to the file name that is
specified for the OE option (in addition to the search information).

Usage

When the OE compiler option is in effect, the compiler uses the POSIX.2 standard
rules when searching for files specified with #include directives. These rules state
that the path of the file currently being processed is the path used as the starting
point for searches of include files contained in that file.

The NOOE option can optionally take a filename suboption. This filename then
becomes the default. If you subsequently use the OE option without a filename
suboption, the compiler uses the filename that you specified in the earlier NOOE.

Example: The following specifications have the same result:
metalc hello.c -qnooe=./hello.c -qoe

metalc hello.c -qoe=./hello.c

If you specify OE and NOOE multiple times, the compiler uses the last specified
option with the last specified suboption.

Example:The following specifications have the same result:
metalc hello.c -qnooe=./hello.c -qoe=./n1.c -qnooe=./test.c -qoe

metalc hello.c -qoe=./test.c

When the OE option is in effect and the main input file is a z/OS UNIX file, the
path of filename is used instead of the path of the main input file name. If the file
names indicated in other options appear ambiguous between z/OS and the z/OS
UNIX file system, the presence of the OE option tells the compiler to interpret the
ambiguous names as z/OS UNIX file names. User include files that are specified in
the main input file are searched starting from the path of filename. If the main
input file is not a z/OS UNIX file, filename is ignored.

Chapter 2. Compiler options 105

For example, if the compiler is invoked to compile a z/OS UNIX file /a/b/hello.c
it searches directory /a/b/ for include files specified in /a/b/hello.c, in accordance
with POSIX.2 rules . If the compiler is invoked with the OE(/c/d/hello.c) option
for the same source file, the directory specified as the suboption for the OE option,
/c/d/, is used to locate include files specified in /a/b/hello.c.

IPA effects

On the IPA link step, the OE option controls the display of file names.

Predefined macros

None.

OPTFILE | NOOPTFILE
Category

Compiler customization

Pragma equivalent

None.

Purpose

Specifies where the compiler should look for additional compiler options.

Syntax

►►
NOOPTF
OPTF

(filename)
►◄

Defaults

NOOPTFILE

Parameters

filename
Specifies an alternative file where the compiler should look for compiler
options.

You can specify any valid filename, including a DD name such as (DD:MYOPTS).
The DD name may refer to instream data in your JCL. If you do not specify
filename, the compiler uses DD:SYSOPTF.

Usage

The NOOPTFILE option can optionally take a filename suboption. This filename then
becomes the default. If you subsequently use the OPTFILE option without a
filename suboption, the compiler uses the filename that you specified with
NOOPTFILE earlier.

Example: The following specifications have the same result:

106 User's Guide

metalc -Wc,"NOOPTF(./hello.opt)" -Wc,OPTF hello.c

metalc -Wc,"OPTF(./hello.opt)" hello.c

The options are specified in a free format with the same syntax as they would have
on the command line or in JCL. The code points for the special characters \f, \v,
and \t are whitespace characters. Everything that is specified in the file is taken to
be part of a compiler option (except for the continuation character), and
unrecognized entries are flagged. Nothing on a line is ignored.

If the record format of the options file is fixed and the record length is greater than
72, columns 73 to the end-of-line are treated as sequence numbers and are ignored.

Notes:

1. Comments are supported in an option file used in the OPTFILE option. When a
line begins with the # character, the entire line is ignored, including any
continuation character. The option files are encoded in the IBM-1047 code page.

2. You cannot nest the OPTFILE option. If the OPTFILE option is also used in the
file that is specified by another OPTFILE option, it is ignored.

3. If you specify NOOPTFILE after a valid OPTFILE, it does not undo the effect of
the previous OPTFILE. This is because the compiler has already processed the
options in the options file that you specified with OPTFILE. The only reason to
use NOOPTFILE is to specify an option file name that a later specification of
OPTFILE can use.

4. If the file cannot be opened or cannot be read, a warning message is issued and
the OPTFILE option is ignored.

5. The options file can be an empty file.
6. Quotation marks on options (for example, '-O3') in the options file are not

removed as they are when specified on the command line.
7. Example: You can use an option file only once in a compilation. If you use the

following options:
OPTFILE(DD:OF) OPTFILE

the compiler processes the option OPTFILE(DD:OF), but the second option
OPTFILE is not processed. A diagnostic message is produced, because the second
specification of OPTFILE uses the same option file as the first.
Example: You can specify OPTFILE more than once in a compilation, if you use
a different options file with each specification:
OPTFILE(DD:OF) OPTFILE(DD:OF1)

IPA effects

The OPTFILE option has the same effect on the IPA link step as it does on a
regular compilation.

Predefined macros

None.

Examples
1. Suppose that you use the following JCL:

// CPARM=’SO OPTFILE(PROJ1OPT)’

Chapter 2. Compiler options 107

If the file PROJ1OPT contains LONGNAME, the effect on the compiler is the same as
if you specified the following:
// CPARM=’SO LONGNAME’

2. Suppose that you include the following in the JCL:
// CPARM=’OPTFILE(PROJ1OPT) LONGNAME OPTFILE(PROJ2OPT) LIST’

If the file PROJ1OPT contains SO LIST, the net effect to the compiler is the same
as if you specified the following:
// CPARM=’SO LIST LONGNAME LIST’

3. The following example shows how to use the options file as an instream file in
JCL:
//COMP EXEC MTCC,
// INFILE=’<userid>.USER.CC(LNKLST)’,
// OUTFILE=’<userid>.USER.ASM(LNKLST),DISP=SHR ’,
// CPARM=’OPTFILE(DD:OPTION)’
//OPTION DD DATA,DLM=@@

LIST
MARGINS
OPT

@@

OPTIMIZE | NOOPTIMIZE
Category

Optimization and tuning

Pragma equivalent

#pragma options (optimize), #pragma options (nooptimize)

#pragma option_override(subprogram_name, "OPT(LEVEL,n)")

Purpose

Specifies whether to optimize code during compilation and, if so, at which level.

Syntax

►►
NOOPT
OPT

(level)
►◄

Defaults

NOOPTIMIZE

When compiling with HOT or IPA, the default is OPTIMIZE(2).

Parameters

level
level can have the following values:

0 Indicates that no optimization is to be done; this is equivalent to
NOOPTIMIZE. You should use this option in the early stages of your

108 User's Guide

application development since the compilation is efficient but the
execution is not. This option also allows you to take full advantage of
the debugger.

2 Indicates that global optimizations are to be performed. You should be
aware that the size of your functions, the complexity of your code, the
coding style, and support of the ISO standard may affect the global
optimization of your program. You may need significant additional
memory to compile at this optimization level.

3 Performs additional optimizations to those performed with
OPTIMIZE(2). OPTIMIZE(3) is recommended when the need for
runtime improvement outweighs the concern for minimizing
compilation resources. Increasing the level of optimization may or may
not result in additional performance improvements, depending on
whether additional analysis detects further opportunities for
optimization. Compilation may require more time and machine
resources.

Use the STRICT option with OPTIMIZE(3) to turn off the aggressive
optimizations that might change the semantics of a program. STRICT
combined with OPTIMIZE(3) invokes all the optimizations performed
at OPTIMIZE(2) as well as further loop optimizations. The STRICT
compiler option must appear after the OPTIMIZE(3) option, otherwise
it is ignored.

The aggressive optimizations performed when you specify
OPTIMIZE(3) are:
v Aggressive code motion, and scheduling on computations that have

the potential to raise an exception, are allowed.
v Conformance to IEEE rules are relaxed. With OPTIMIZE(2), certain

optimizations are not performed because they may produce an
incorrect sign in cases with a zero result, and because they remove
an arithmetic operation that may cause some type of floating-point
exception. For example, X + 0.0 is not folded to X because, under
IEEE rules, -0.0 + 0.0 = 0.0, which is -X. In some other cases, some
optimizations may perform optimizations that yield a zero result
with the wrong sign. For example, X - Y * Z may result in a -0.0
where the original computation would produce 0.0. In most cases,
the difference in the results is not important to an application and
OPTIMIZE(3) allows these optimizations.

v Floating-point expressions may be rewritten. Computations such as
a*b*c may be rewritten as a*c*b if, for example, an opportunity exits
to get a common subexpression by such rearrangement. Replacing a
divide with a multiply by the reciprocal is another example of
reassociating floating-point computations.

no level
OPTIMIZE specified with no level defaults, depending on the
compilation environment and IPA mode.

Usage

When the OPTIMIZE compiler option is in effect, the compiler is instructed to
optimize the generated machine instructions to produce a faster running object
module. This type of optimization can also reduce the amount of main storage that
is required for the generated object module.

Chapter 2. Compiler options 109

Note: When the compiler is invoked using the metalc command under z/OS
UNIX System Services, the optimization level is specified by the compiler flag -O
(the letter O). The OPTIMIZE option has no effect on the metalc command.

Using OPTIMIZE will increase compile time over NOOPTIMIZE and may have
greater storage requirements. During optimization, the compiler may move code to
increase runtime efficiency; as a result, statement numbers in the program listing
may not correspond to the statement numbers used in runtime messages.

The OPTIMIZE option will control the overall optimization value. Any
subprogram-specific optimization levels specified at compile time by #pragma
option_override(subprogram_name, "OPT(LEVEL,n)") directives will be retained.
Subprograms with an OPT(LEVEL,0) value will receive minimal code generation
optimization. Subprograms may not be inlined or inline other subprograms.
Generate and check the inline report to determine the final status of inlining.

Inlining of functions in conjunction with other optimizations provides optimal
runtime performance. The option INLINE is automatically turned on when you
specify OPTIMIZE, unless you have explicitly specified the NOINLINE option. See
“INLINE | NOINLINE” on page 73 for more information about the INLINE option
and the optimization information.

If you specify OPTIMIZE with DEBUG, you can only set breakpoints at function
call, function entry, function exit, and function return points. See “DEBUG |
NODEBUG” on page 46 for more information about the DEBUG option with
optimization.

In the z/OS UNIX System Services environment, -g implies NOOPTIMIZE.

Information about the optimization level is inserted in the object file to aid you in
diagnosing a problem with your program.

Effect of ANSIALIAS: When the ANSIALIAS option is specified, the optimizer
assumes that pointers can point only to objects of the same type, and performs
more aggressive optimization. However, if this assumption is not true and
ANSIALIAS is specified, wrong program code could be generated. If you are not
sure, use NOANSIALIAS.

IPA effects

During a compilation with IPA Compile-time optimizations active, any
subprogram-specific optimization levels specified by #pragma
option_override(subprogram_name, "OPT(LEVEL,n)") directives will be retained.
Subprograms with an OPT(LEVEL,0) value will receive minimal IPA and code
generation optimization. Subprograms may not be inlined or inline other
subprograms. Generate and check the inline report to determine the final status of
inlining.

On the IPA compile step, all values (except for (0)) of the OPTIMIZE compiler
option and the OPT suboption of the IPA option have an equivalent effect.

OPTIMIZE(2) is the default for the IPA link step, but you can specify any level of
optimization. The IPA link step Prolog listing section will display the value of this
option.

110 User's Guide

This optimization level will control the overall optimization value. Any
subprogram-specific optimization levels specified at IPA Compile time by #pragma
option_override(subprogram_name, "OPT(LEVEL,n)") directives will be retained.
Subprograms with an OPT(LEVEL,0)) value will receive minimal IPA and code
generation optimization, and will not participate in IPA Inlining.

The IPA link step merges and optimizes your application code, and then divides it
into sections for code generation. Each of these sections is a partition. The IPA link
step uses information from the IPA compile step to determine if a subprogram can
be placed in a particular partition. Only compatible subprograms are included in a
given partition. Compatible subprograms have the same OPTIMIZE setting.

The OPTIMIZE setting for a partition is set to that of the first subprogram that is
placed in the partition. Subprograms that follow are placed in partitions that have
the same OPTIMIZE setting. An OPTIMIZE(0) mode is placed in an OPTIMIZE(0)
partition, and an OPTIMIZE(2) is placed in an OPTIMIZE(2) partition.

The option value that you specified for each IPA object file on the IPA compile step
appears in the IPA link step Compiler Options Map listing section.

The Partition Map sections of the IPA link step listing and the object module END
information section display the value of the OPTIMIZE option. The Partition Map
also displays any subprogram-specific OPTIMIZE values.

If you specify OPTIMIZE(2) for the IPA link step, but only OPTIMIZE(0) for the
IPA compile step, your program may be slower or larger than if you specified
OPTIMIZE(2) for the IPA compile step. This situation occurs because the IPA
compile step does not perform as many optimizations if you specify OPTIMIZE(0).

Refer to the descriptions for the OPTIMIZE and LEVEL suboptions of the IPA
option in “IPA | NOIPA” on page 75 for information about using the OPTIMIZE
option under IPA.

Predefined macros

__OPTIMIZE__ is defined to the value specified by the OPTIMIZE compiler option;
it is undefined if NOOPTIMIZE is used.

Related information

For more information about related compiler options, see:
v “DEBUG | NODEBUG” on page 46
v “ANSIALIAS | NOANSIALIAS” on page 24

PHASEID | NOPHASEID
Category

Listings, messages and compiler information

Pragma equivalent

None.

Chapter 2. Compiler options 111

Purpose

Causes each compiler component (phase) to issue an informational message as
each phase begins execution, which assists you with determining the maintenance
level of each compiler component (phase). This message identifies the compiler
phase module name, product identification, and build level.

Syntax

►►
NOPHASEID
PHASEID ►◄

Defaults

NOPHASEID

Usage

The compiler issues a separate CJT0000(I) message each time compiler execution
causes a given compiler component (phase) to be entered. This could happen many
times for a given compilation.

The FLAG option has no effect on the PHASEID informational message.

In the z/OS UNIX System Services environment, -qphsinfo is synonymous with
the PHASEID compiler option.

Note: The compiler saves phase ID information for all active compiler phases in an
executable using the Saved Option String feature even if you don't specify the
PHASEID compiler option.

Predefined macros

None.

PPONLY | NOPPONLY
Category

Compiler output

Pragma equivalent

None.

Purpose

Specifies that only the preprocessor is to be run and not the compiler.

When the PPONLY compiler option is in effect, the output of the preprocessor
consists of the original source file with all the macros expanded and all the include
files inserted. It is in a format that can be compiled.

When the NOPPONLY compiler option is in effect, both the preprocessor and the
compiler are used to compile the source file.

112 User's Guide

Syntax

►►
NOPP
PP

▼

,

(filename)
COMMENTS
NOCOMMENTS
LINES
NOLINES
n
*

►◄

Defaults

NOPPONLY

For the z/OS UNIX System Services utilities, the default for a regular compile is
NOPPONLY(NOCOMMENTS, NOLINES, /dev/fd1, 2048).

When using the metalc utility, this option can be turned on by specifying the -E or
-P flag options, or by specifying the -qpponly compiler option in a manner similar
to specifying the PPONLY option in JCL or TSO compiler invocations.

Parameters

COMMENTS | NOCOMMENTS
The COMMENTS suboption preserves comments in the preprocessed output.
The default is NOCOMMENTS.

LINES | NOLINES
The LINES suboption issues #line directives at include file boundaries, block
boundaries and where there are more than 3 blank lines. The default is
NOLINES.

filename
The name for the preprocessed output file. The filename may be a data set or a
z/OS UNIX file. If you do not specify a file name for the PPONLY option, the
SYSUT10 ddname is used if it has been allocated. If SYSUT10 has not been
allocated, the file name is generated as follows:
v If a data set is being compiled, the name of the preprocessed output data set

is formed using the source file name. The high-level qualifier is replaced
with the userid under which the compiler is running, and .EXPAND is
appended as the low-level qualifier.

v If the source file is a z/OS UNIX file, the preprocessed output is written to a
z/OS UNIX file that has the source file name with .i extension.

Note: If you are using the xlc utility and you do not specify the file name, the
preprocessed output goes to stdout. If -E or -P is also specified, the output file
is determined by the -E option. The -E flag option maps to PP(stdout). -P
maps to PP(default_name). default_name is constructed using the source file
name as the base and the suffix is replaced with the appropriate suffix, as
defined by the isuffix, isuffix_host, ixxsuffix, and ixxsuffix_host
configuration file attributes. See Chapter 14, “metalc — Compiler invocation
using a customizable configuration file,” on page 219 for further information
on the metalc utility.

Chapter 2. Compiler options 113

n If a parameter n, which is an integer between 2 and 32752 inclusive, is
specified, all lines are folded at column n. The default for n is 72.

Note: If the PPONLY output is directed into an existing file, and n is larger
than the maximum record length of the file, then all lines are folded to fit into
the output file, based on the record length of the output file.

* If an asterisk (*) is specified, the lines are folded at the maximum record length
of 32752. Otherwise, all lines are folded to fit into the output file, based on the
record length of the output file.

Usage

PPONLY output is typically requested when reporting a compiler problem to IBM
using a Problem Management Record (PMR), so your build process should be able
to produce a PPONLY file on request.

Note: For further information on the PMR process, refer to the Software Support
Handbook (techsupport.services.ibm.com/guides/handbook.html).

PPONLY also removes conditional compilation constructs like #if, and #ifdef.

Note: If the PPONLY output is directed into an existing file, the record length of
the file will be used to override the value of n if that value is bigger than the
maximum record length.

The PPONLY suboptions are cumulative. If you specify suboptions in multiple
instances of PPONLY and NOPPONLY, all the suboptions are combined and used
for the last occurrence of the option.

Example: The following three specifications have the same result:
metalc -Wc,"NOPPONLY(./aa.exp)" -Wc,"PPONLY(LINES)" -Wc,"PPONLY(NOLINES)" hello.c

metalc -Wc,"PPONLY(./aa.exp,LINES,NOLINES)" hello.c

metalc -Wc,"PPONLY(./aa.exp,NOLINES)" hello.c

All #line and #pragma preprocessor directives (except for margins and sequence
directives) remain. When you specify PPONLY(*), #line directives are generated to
keep the line numbers generated for the output file from the preprocessor similar
to the line numbers generated for the source file. All consecutive blank lines are
suppressed.

If you specify the PPONLY option, the compiler turns on the TERMINAL option. If
you specify the SHOWINC, AGGREGATE, or EXPMAC options with the PPONLY
option, the compiler issues a warning, and ignores the options.

If you specify the PPONLY and LOCALE options, all the #pragma filetag
directives in the source file are suppressed. The compiler generates its #pragma
filetag directive at the first line in the preprocessed output file in the following
format:
??=pragma filetag ("locale code page")

In this example, ??= is a trigraph representation of the # character.

The code page in the pragma is the code set that is specified in the LOCALE
option.

114 User's Guide

http://techsupport.services.ibm.com/guides/handbook.html
http://techsupport.services.ibm.com/guides/handbook.html

If you specify both PPONLY and NOPPONLY, the last one that is specified is used.

In the z/OS UNIX environment, the COMMENTS suboption can be requested by
specifying the -C flag option. When using the metalc utility, the PPONLY option
can be specified in addition to the -E, -P and -C flag options (for example,
-qpponly=myfunc.pp:comments:nolines:65).

Note: -Wc,PPONLY syntax is not supported.

Predefined macros

None.

Related information

For more information on related compiler options, see:
v “TERMINAL | NOTERMINAL” on page 144
v “SHOWINC | NOSHOWINC” on page 131
v
v “AGGREGATE | NOAGGREGATE” on page 23
v “EXPMAC | NOEXPMAC” on page 56

PREFETCH | NOPREFETCH
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Inserts prefetch instructions automatically where there are opportunities to
improve code performance.

When PREFETCH is in effect, the compiler may insert prefetch instructions in
compiled code. When NOPREFETCH is in effect, prefetch instructions are not
inserted in compiled code.

Syntax

►►
PREFETCH
NOPREFETCH ►◄

Defaults

PREFETCH

Chapter 2. Compiler options 115

Usage

The compiler will attempt to generate prefetch instructions for ARCH(8) or above.
The compiler will not issue a message if PREFETCH is active and the ARCH level
is below 8.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

Predefined macros

None.

PROLOG
Category

Object code control

Pragma equivalent

#pragma prolog

Purpose

Enables you to provide your own function entry code for all functions that have
extern scope, or for all extern and static functions.

Syntax

►► PROLOG ("text-string")
EXTERN ("text-string")
ALL

►◄

Defaults

The compiler generates default prolog code for the functions that do not have
user-supplied prolog code.

Parameters

text-string

text-string is a C string, which must contain valid HLASM statements.

If the text-string consists of white-space characters only, or if the text-string is
not provided, then the compiler ignores the option specification. If the
text-string does not contain any white-space characters, then the compiler will
insert leading spaces in front. Otherwise, the compiler will insert the text-string
into the function prolog location of the generated assembler source. The
compiler does not understand or validate the contents of the text-string. In
order to satisfy the assembly step later, the given text-string must form valid
HLASM code with the surrounding code generated by the compiler.

Note: Special characters like newline and quote are shell (or command line)
meta characters, and may be preprocessed before reaching the compiler. It is

116 User's Guide

advisable to avoid using them. The intended use of this option is to specify an
assembler macro as the function prolog.

For information on valid HLASM statements, see #pragma prolog.

EXTERN
If the PROLOG option is specified with this suboption or without any
suboption, the prolog applies to all functions that have external linkage in the
compilation unit.

ALL
If the PROLOG option is specified with this suboption, the prolog also applies
to static functions defined in the compilation unit.

Usage

Notes:

1. When the PROLOG option is specified multiple times with the same suboption
all or extern, only the function entry code of the last suboption specified will
be displayed.

2. The PROLOG option with the suboption all overwrites the one with extern
suboption, or the one without any suboption.

IPA effects

See Building Metal C programs with IPA in Enterprise Metal C for z/OS User's
Guide.

Predefined macros

None.

Related information

See “EPILOG” on page 53 for information on providing function exit code for
system development.

RENT | NORENT
Category

Object code control

Pragma equivalent

#pragma options (rent), #pragma options (norent)

#pragma variable(rent), #pragma variable(norent)

Purpose

Generates reentrant code.

When the RENT compiler option is in effect, the compiler takes code that is not
naturally reentrant and make it reentrant. Refer to z/OS Language Environment
Programming Guide for a detailed description of reentrancy.

Chapter 2. Compiler options 117

When the NORENT compiler option is in effect, the compiler does not generate
reentrant code from non-reentrant code. Any naturally reentrant code remains
reentrant.

Syntax

►►
NORENT
RENT ►◄

Defaults

NORENT.

Usage

If you use the RENT option, the linkage editor cannot directly process the object
module that is produced. You must use the binder, which is described in
Chapter 6, “Binding programs,” on page 193.

The RENT option can be enabled to support constructed reentrancy for C
programs with writable static and external variables. The writable static area
(WSA) can be managed by user provided initialization and termination functions.

Notes:

1. Enterprise Metal C for z/OS code always uses constructed reentrancy so the
RENT option is always in effect.

2. RENT variables reside in the modifiable Writable Static Area (WSA) for
Enterprise Metal C for z/OS programs.

3. NORENT variables reside in the code area (which might be write protected) for
Enterprise Metal C for z/OS programs.

4. The RENT compiler option has implications on how the binder processes
objects. See z/OS MVS Program Management: User's Guide and Reference for
further information.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

If you specify RENT or use #pragma strings(readonly) or #pragma variable(rent
| norent) during the IPA compile step, the information in the IPA object file
reflects the state of each symbol.

If you specify the RENT option on the IPA link step, it ignores the option. The
reentrant/nonreentrant state of each symbol is maintained during IPA optimization
and code generation. If any symbols within a partition are reentrant, the option
section of the Partition Map displays the RENT compiler option.

If you generate an IPA Link listing by using the LIST or IPA(MAP) compiler
option, the IPA link step generates a Partition Map listing section for each
partition. If any symbols within a partition are reentrant, the options section of the
Partition Map displays the RENT compiler option.

118 User's Guide

Predefined macros

None.

Related information

For more information on related compiler options, see:
v “LIST | NOLIST” on page 83
v “IPA | NOIPA” on page 75

RESERVED_REG
Category

Object code control

Pragma equivalent

None.

Purpose

Instructs the compiler not to use the specified general purpose register (GPR)
during the compilation.

Syntax

►► ▼

,

RES_REG (reg_name) ►◄

Defaults

Not specified.

Parameters

reg_name
Only the general purpose registers 0-15 (written as r0, r1, ..., r15 or R0, R1,
...,R15) can be specified for the RESERVED_REG option. Any other name is
rejected with a warning message. Some general purpose registers have
designated roles in the compiler for generating program code, and reserving
these registers may prevent the compiler from generating the correct code. See
Table 21 on page 120 for further information on z/OS general purpose registers
that have designated roles for the Enterprise Metal C for z/OS compiler.

Usage

A global register variable declaration reserves the register for the declared variable
in the compilation unit where the declaration appears. The register is not reserved
in other compilation units unless the global register declaration is placed in a
common header file.

Notes:

1. Duplicate register names are ignored silently.

Chapter 2. Compiler options 119

2. The RESERVED_REG option is cumulative, which means that, for example:
-qreserved_reg=r14 -qreserved_reg=r15

is equivalent to:
-qreserved_reg=r14:r15

Table 21. General purpose registers that have designated roles for the Enterprise Metal C
for z/OS compiler

Register Designated role

r0 volatile

r1 parameter list pointer

r3 designated by the compiler

r10 used by the C generated code for addressing data

r11 used by the C generated code for addressing data

r13 savearea pointer (C: stack pointer)

r14 function return address

r15 function entry point on entry, return code on exit. (C: integral
type return value)

IPA effects

See Building Metal C programs with IPA in Enterprise Metal C for z/OS User's
Guide.

Predefined macros

None.

RESTRICT | NORESTRICT
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Indicates to the compiler that no other pointers can access the same memory that
has been addressed by function parameter pointers.

Syntax

►►
NORESTRICT
RESTRICT

▼

()
,

function_name

►◄

120 User's Guide

Defaults

NORESTRICT

When NORESTRICT is in effect, no function parameter pointers are restricted
unless the restrict attribute is specified in the source.

Parameters

function_name is a comma-separated list. If you do not specify the function_name,
parameter pointers in all functions are treated as restrict. Otherwise, only those
parameter pointers in the listed functions are treated as restrict.

Usage

The RESTRICT option indicates to the compiler that pointer parameters in all
functions or in specified functions are disjoint. This is equivalent to adding the
restrict keyword to the parameter pointers within the required functions, but
without having to modify the source file. When RESTRICT is in effect, deeper
pointer analysis is done by the compiler and performance of the application being
compiled is improved.

Note that incorrectly asserting this pointer restriction might cause the compiler to
generate incorrect code based on the false assumption. If the application works
correctly when recompiled without the RESTRICT option, the assertion might be
incorrect. In this case, this option should not be used.

Note: When RESTRICT and NORESTRICT are specified multiple times, the last
option specified on the command line takes precedence over any previous
specifications.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

Predefined macros

None.

ROCONST | NOROCONST
Category

Object code control

Pragma equivalent

#pragma variable(var_name, NORENT)

Purpose

Specifies the storage location for constant values.

When the ROCONST compiler option is in effect, the compiler places constants in
read-only storage, even if the RENT option is in effect. Placing constant values in
read-only memory can improve runtime performance, save storage, and provide
shared access.

Chapter 2. Compiler options 121

When the NOROCONST compiler option is in effect, constant values are placed in
read/write storage.

Syntax

For C:

►►
NOROC
ROC ►◄

Defaults

The default option is NOROCONST.

Usage

The ROCONST option informs the compiler that the const qualifier is respected by
the program. Variables defined with the const keyword will not be overridden by
a casting operation.

Note that these const variables cannot be exported.

If the specification for a const variable in a #pragma variable directive is in
conflict with the option, the #pragma variable takes precedence. The compiler
issues an informational message.

If you set the ROCONST option, and if there is a #pragma export for a const
variable, the pragma directive takes precedence. The compiler issues an
informational message. The variable will still be exported and the variable will be
reentrant.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

If you specify the ROCONST option during the IPA compile step, the information
in the IPA object file reflects the state of each symbol.

If you specify the ROCONST option on the IPA link step, it ignores the option. The
reentrant or non-reentrant and const or non-const state of each symbol is
maintained during IPA optimization and code generation.

The IPA link step merges and optimizes your application code, and then divides it
into sections for code generation. Each of these sections is a partition. The IPA link
step uses information from the IPA compile step to determine if a subprogram can
be placed in a particular partition. Only compatible subprograms are included in a
given partition. Compatible subprograms have the same ROCONST setting.

The ROCONST setting for a partition is set to the specification of the first
subprogram that is placed in the partition.

The option value that you specified for each IPA object file on the IPA compile step
appears in the IPA link step Compiler Options Map listing section.

122 User's Guide

The RENT, ROCONST, and ROSTRING options both contribute to the re-entrant or
non-reentrant state for each symbol.

The Partition Map sections of the IPA link step listing and the object module END
information section display the value of the ROCONST option.

Predefined macros

None.

Related information

For more information on related compiler options, see:
v “RENT | NORENT” on page 117
v “ROSTRING | NOROSTRING”

ROSTRING | NOROSTRING
Category

Object code control

Pragma equivalent

#pragma strings(readonly)

Purpose

Specifies the storage type for string literals.

When the ROSTRING compiler option is in effect, the compiler places string
literals in read-only storage. Placing string literals in read-only memory can
improve runtime performance and save storage.

When the NOROSTRING compiler option is in effect, string literals are placed in
read/write storage.

Syntax

►►
RO
NORO ►◄

Defaults

ROSTRING

Usage

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

If you specify the ROSTRING option during the IPA compile step, the information
in the IPA object file reflects the state of each symbol.

Chapter 2. Compiler options 123

If you specify the ROSTRING option on the IPA link step, it ignores the option.
The reentrant or nonreentrant state of each symbol is maintained during IPA
optimization and code generation.

The Partition Map section of the IPA link step listing and the object module do not
display information about the ROSTRING option for that partition. The RENT,
ROCONST, and ROSTRING options all contribute to the reentrant or nonreentrant
state for each symbol. If any symbols within a partition are reentrant, the option
section of the Partition Map displays the RENT compiler option.

Predefined macros

None.

Related information

For more information on related compiler options, see:
v “RENT | NORENT” on page 117
v “ROCONST | NOROCONST” on page 121

ROUND
Category

Floating-point and integer control

Pragma equivalent

None.

Purpose

Specifies the rounding mode for the compiler to use when evaluating constant
floating-point expressions at compile time.

Syntax

The ROUND option is only valid when used with a base 2 IEEE-754 binary format
(specified by the FLOAT(IEEE) compiler option) or base 16 z/Architecture
hexadecimal format (specified by the FLOAT(HEX) compiler option).

When FLOAT(IEEE) is specified:

►►
N

ROUND (M)
P
Z

►◄

When FLOAT(HEX) is specified:

►► ROUND (Z) ►◄

124 User's Guide

Defaults
v For FLOAT(IEEE), the default option is ROUND(N).
v For FLOAT(HEX), the default option is ROUND(Z).

Parameters

When FLOAT(IEEE) is in effect, the following modes are valid:

N round to the nearest representable number (ties to even)

Note: A tie occurs when the number to be rounded is at the exact midpoint
between two values towards which it can be rounded. For example, if we are
rounding to the nearest representable whole number, and we are given the
value 1.5, we are at the exact midpoint between the two nearest whole
numbers (2 and 1). This is considered a tie. In this example, and using ties to
even, we would round the value 1.5 to the value 2, as 2 is an even number.

M round towards minus infinity

P round towards positive infinity

Z round towards zero

Note: ROUND() is the same as ROUND(N).

Usage

You can specify a rounding mode only when you use IEEE floating-point mode. In
hexadecimal mode, the rounding is always towards zero.

You must ensure that you are in the same rounding mode at compile time
(specified by the ROUND(mode) option), as at run time. Entire compilation units
will be compiled with the same rounding mode throughout the compilation. If you
switch runtime rounding modes inside a function, your results may vary
depending upon the optimization level used and other characteristics of your code;
use caution if you switch rounding mode inside functions.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

The IPA compile step generates information for the IPA link step.

The IPA link step merges and optimizes the application code, and then divides it
into sections for code generation. Each of these section is a partition. The IPA link
step uses information from the IPA compile step to ensure that an object is
included in a compatible partition.

Predefined macros

None.

Related information

For information about related compiler options, see:
v “FLOAT” on page 58

Chapter 2. Compiler options 125

SEARCH | NOSEARCH
Category

Compiler input

Pragma equivalent

None.

Purpose

Specifies the directories or data sets to be searched for system include files.

When the SEARCH compiler option is in effect, the preprocessor looks for system
include files in the specified directories or data sets. System include files are those
files that are associated with the #include <filename> form of the #include
preprocessor directive. See “Using include files” on page 173 for a description of
the #include preprocessor directive.

When the NOSEARCH compiler option is in effect, the preprocessor searches only
those data sets that are specified in the SYSLIB statement.

Syntax

►►

▼

,

SE (opt)
//

NOSE ►◄

Defaults

SEARCH(/usr/include/metal)

Parameters

The suboptions for the SEARCH option are identical to those for the LSEARCH
option. For information on the LSEARCH option, see “LSEARCH | NOLSEARCH”
on page 91.

Usage

The SYSLIB ddname is considered the last suboption for SEARCH, so that
specifying SEARCH (X) is equivalent to specifying SEARCH(X,DD:SYSLIB).

Any NOSEARCH option cancels all previous SEARCH specifications, and any new
SEARCH options that follow it are used. When more than one SEARCH compile
option is specified, all directories or data sets in the SEARCH options are used to
find the system include files.

Notes:

1. SEARCH allows the compiler to distinguish between header files that have the
same name but reside in different data sets. If NOSEARCH is in effect, the
compiler searches for header files only in the data sets concatenated under the

126 User's Guide

SYSLIB DD statement. As the compiler includes the header files, it uses the first
file it finds, which may not be the correct one. Thus the build may encounter
unpredictable errors in the subsequent link-edit or bind, or may result in a
malfunctioning application.

2. If the filename in the #include directive is in absolute form, searching is not
performed. See “Determining whether the file name is in absolute form” on
page 178 for more details on absolute #include filename.

IPA effects

The SEARCH option is used for source code searching, and has the same effect on
an IPA compile step as it does on a regular compilation.

The IPA link step accepts the SEARCH option, but ignores it.

Predefined macros

None.

Related information

For further information on library search sequences, see “Search sequences for
include files” on page 182.

SEQUENCE | NOSEQUENCE
Category

Compiler input

Pragma equivalent

#pragma sequence, #pragma nosequence

Purpose

Specifies the columns used for sequence numbers.

Syntax

For fixed record format, variable record format, and the z/OS UNIX file system:

►►
SEQ (m,n)
NOSEQ ►◄

Defaults
v For variable record format and the z/OS UNIX file system, the default is

NOSEQUENCE.
v For fixed record format, the default is SEQUENCE(73,80).

Parameters

m Specifies the column number of the left-hand margin. The value of m must be
greater than 0 and less than 32760.

n Specifies the column number of the right-hand margin. The value of n must be

Chapter 2. Compiler options 127

greater than m and less than 32760. An asterisk (*) can be assigned to n to
indicate the last column of the input record. Thus, SEQUENCE (74,*) shows
that sequence numbers are between column 74 and the end of the input record.

Usage

When the SEQUENCE compiler option is in effect, it defines the section of the
input record that is to contain sequence numbers. No attempt is made to sort the
input lines or records into the specified sequence or to report records out of
sequence.

You can use the MARGINS and SEQUENCE options together. The MARGINS
option is applied first to determine which columns are to be scanned. The
SEQUENCE option is then applied to determine which of these columns are not to
be scanned. If the SEQUENCE settings do not fall within the MARGINS settings,
the SEQUENCE option has no effect.

Note: If your program uses the #include preprocessor directive to include
Enterprise Metal C for z/OS library header files and you want to use the
SEQUENCE option, you must ensure that the specifications on the SEQUENCE
option do not include any columns from 20 through 50. That is, both m and n must
be less than 20, or both must be greater than 50. If your program does not include
any Enterprise Metal C for z/OS library header files, you can specify any setting
you want on the SEQUENCE option when the setting is consistent with your own
include files.

Predefined macros

None.

Related information

“MARGINS | NOMARGINS” on page 99

SERVICE | NOSERVICE
Category

Error checking and debugging

Pragma equivalent

#pragma options(service), #pragma options(noservice)

Purpose

Places a string in the object module, which is displayed in the traceback if the
application fails abnormally.

Syntax

►►
NOSERV
SERV (string) ►◄

128 User's Guide

Defaults

NOSERVICE

Parameters

string
User-specified string of characters.

Usage

When the SERVICE compiler option is in effect, the string in the object module is
loaded into memory when the program is executing. If the application fails
abnormally, the string is displayed in the traceback.

If the SERVICE option is specified both on a #pragma options directive and on the
command line, the option that is specified on the command line will be used.

You must enclose your string within opening and closing parentheses. You do not
need to include the string in quotation marks.

The following restrictions apply to the string specified:
v The string cannot exceed 64 characters in length. If it does, excess characters are

removed, and the string is truncated to 64 characters. Leading and trailing
blanks are also truncated.

Note: Leading and trailing spaces are removed first and then the excess
characters are truncated.

v All quotation marks that are specified in the string are removed.
v All characters, including DBCS characters, are valid as part of the string

provided they are within the opening and closing parentheses.
v Parentheses that are specified as part of the string must be balanced. That is, for

each opening parentheses, there must be a closing one. The parentheses must
match after truncation.

v When using the #pragma options directive, the text is converted according to the
locale in effect.

v Only characters which belong to the invariant character set should be used, to
ensure that the signature within the object module remains readable across
locales.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

If you specify the SERVICE option on the IPA compile step, or specify #pragma
options(service) in your code, it has no effect on the IPA link step. Only the
SERVICE option you specify on the IPA link step affects the generation of the
service string for that step.

Predefined macros

None.

Chapter 2. Compiler options 129

SEVERITY | NOSEVERITY
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Changes the default severities for certain user-specified messages, if these messages
are generated by the compiler.

Syntax

►►
NOSEVERITY
SEVERITY ▼

,

(I (Message Number))
W
E

►◄

Defaults

NOSEVERITY

When NOSEVERITY is in effect, all the previous message severity changes are
cleared.

Parameters

I Specifies the message severity level of informational (I).

W Specifies the message severity level of warning (W).

E Specifies the message severity level of error (E).

Message Number
Represents a valid compiler message number, which must be in the following
format:

abc****

Where:
v abc is the three-letter code prefix representing the message types.
v **** is the four-digit message number.

Usage

The SEVERITY option allows you to set the severity for certain messages that you
specified. The compiler will use the new severity if the specified messages are
generated by the compiler. You can use this option to match your build process
rules for cases which are known not to be problems.

The new severity can be higher or lower than the default compiler severity. When
you decrease message severities, you can only decrease informational (I) and
warning (W) messages. The (E) level messages cannot be decreased.

130 User's Guide

Note: When multiple severities are specified for one message, the last valid
severity specified on the command line takes precedence over any previous valid
specifications.

Predefined macros

None.

Examples

If your program prototype.c normally results in the following output:
WARNING CJT3304 ./prototype.c:2 No function prototype given for "malloc".

You can decrease the severity of the message to INFORMATIONAL by compiling
with:
metalc prototype.c -qseverity=i=CJT3304

SHOWINC | NOSHOWINC
Category

Listings, messages and compiler information

Pragma equivalent

None.

Purpose

When used with SOURCE option to generate a listing file, selectively shows user
and system header files in the source program section of the listing file.

Syntax

►►
NOSHOW
SHOW ►◄

Defaults

NOSHOWINC

Usage

In the listing, the compiler replaces all #include preprocessor directives with the
source that is contained in the include file.

The SHOWINC option has effect only if the SOURCE option is also in effect.

Predefined macros

None.

Chapter 2. Compiler options 131

Related information

For more information on the SOURCE compiler option, see “SOURCE |
NOSOURCE” on page 134.

SHOWMACROS | NOSHOWMACROS
Category

Compiler output

Pragma equivalent

None.

Purpose

Displays macro definitions to preprocessed output.

Displaying macros to preprocessed output can help to determine the available
functionality in the compiler. The macro listing may prove useful in debugging
complex macro expansions.

Syntax

►►

▼

NOSHOWM
SHOWM

,

(ALL)
NOPRE
PRE

►◄

Defaults

NOSHOWMACROS

The SHOWMACROS option replaces the preprocessed output with the macro
define directives.

Parameters

ALL
Emits all macro definitions to preprocessed output. This is the same as
specifying SHOWMACROS.

PRE
Emits only predefined macro definitions to preprocessed output. This
suboption has no impact on user macros.

NOPRE
Suppresses appending predefined macro definitions to preprocessed output.

Usage

Specifying SHOWMACROS with no suboptions is equivalent to
SHOWMACROS(ALL).

132 User's Guide

Specify SHOWMACROS(ALL,NOPRE) to emit only the user defined macros.

Note the following information when using this option:
v This option has no effect unless preprocessed output is generated; for example,

using the -qpponly option in the metalc utility, or using the PPONLY option
through JCL and TSO.

v If a macro is defined and subsequently undefined before compilation ends, this
macro will not be included in the preprocessed output.

v Only macros defined internally by the preprocessor are considered predefined;
all other macros are considered as user-defined.

Predefined macros

None.

SKIPSRC
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

When a listing file is generated using the SOURCE option, SKIPSRC option can be
used to determine whether the source statements skipped by the compiler are
shown in the source section of the listing file.

Syntax

►►
SHOW

SKIPS (HIDE) ►◄

Defaults

SKIPSRC(SHOW)

Parameters

SHOW
Shows all source statements in the listing.

HIDE
Hides the source statements skipped by the compiler. This improves the
readability of the listing file.

Usage

The SKIPSRC option has effect only if the SOURCE option is also in effect. For
information on the SOURCE options, see “SOURCE | NOSOURCE” on page 134.

Chapter 2. Compiler options 133

Predefined macros

None.

SOURCE | NOSOURCE
Category

Listings, messages and compiler information

Pragma equivalent

None.

Purpose

Produces a compiler listing file that includes the source section of the listing.

Syntax

►►
NOSO
SO

(Sequential filename)
Partitioned data set
Partitioned data set (member)
z/OS UNIX System Services filename
z/OS UNIX System Services directory

►◄

Defaults

NOSOURCE

Parameters

Sequential filename
Specifies the sequential data set file name for the compiler listing.

Partitioned data set
Specifies the partitioned data set for the compiler listing.

Partitioned data set (member)
Specifies the partitioned data set (member) for the compiler listing.

z/OS UNIX System Services filename
Specifies the z/OS UNIX System Services file name for the compiler listing.

z/OS UNIX System Services directory
Specifies the z/OS UNIX System Services directory for the compiler listing.

Usage

If you specify SOURCE(filename), the compiler places the listing in the file that you
specified. If you do not specify a file name for the SOURCE option, the compiler
uses the SYSCPRT ddname if you allocated one. Otherwise, the compiler constructs
the file name as follows:

134 User's Guide

v If you are compiling a data set, the compiler uses the source file name to form
the name of the listing data set. The high-level qualifier is replaced with the
userid under which the compiler is running, and .LIST is appended as the
low-level qualifier.

v If the source file is a z/OS UNIX file, the listing is written to a file that has the
name of the source file with a .lst extension in the current working directory.

The NOSOURCE option can optionally take a file name suboption. This file name
then becomes the default. If you subsequently use the SOURCE option without a
file name suboption, the compiler uses the file name that you specified in the
earlier NOSOURCE.

Example: The following specifications have the same result:
metalc -Wc,"NOSO(./hello.lis)" -Wc,SO hello.c

metalc -Wc,"SO(./hello.lis)"

If you specify SOURCE and NOSOURCE multiple times, the compiler uses the last
specified option with the last specified suboption. For example, the following
specifications have the same result:
metalc -Wc,"NOSO(./hello.lis)" -Wc,"SO(./n1.lis)" -Wc,"NOSO(./test.lis)" -Wc,SO hello.c

metalc -Wc,"SO(./test.lis)" hello.c

Notes:

v If you use the following form of the command in a JES3 batch environment
where xxx is an unallocated data set, you may get undefined results.
SOURCE(xxx)

v If you specify data set names with the SOURCE or LIST option, the compiler
combines all the listing sections into the last data set name specified.

Predefined macros

None.

SPLITLIST | NOSPLITLIST
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Enables the compiler to write the IPA Link phase listing to multiple PDS members,
PDSE members, or z/OS UNIX files. The SPLITLIST compiler option has no effect
unless the LIST compiler option is also specified.

Syntax

►►
NOSPL
SPL ►◄

Chapter 2. Compiler options 135

Defaults

NOSPLITLIST

Usage

Normally, the default listing location is stdout or SYSCPRT. You can instruct the
compiler to output listing contents into a file by using the LIST option. This
method can be useful when the source file is large and there is a large amount of
detail in the listing. Writing the listing contents to a file, allows you to use an
editor or a search utility to browse through the file. However, for the IPA Link
phase, which processes the whole application instead of just one source file, there
are situations when the listing file itself becomes too large, which can cause
difficulties for an editor or search utility. The SPLITLIST option is designed to split
a listing into multiple files so that it will be easier for you to browse and edit large
listings.

The SPLITLIST option is used only in the IPA Link phase, and the location of the
files, which must be a PDS, PDSE, or z/OS UNIX file system directory, must be
specified by the LIST option. If the LIST option is not used to specify a location,
you will receive an error message.

Table 22 shows the names given to the generated listing sections if a z/OS UNIX
file system directory name is specified. In the table, we assume the location is a
directory called listing, and there are three partitions generated by the IPA Link
phase.

Table 22. Listing section names comparison for a specified z/OS UNIX file system directory

Listing section names generated with
SPLITLIST

Listing section names generated with
NOSPLITLIST

listing/part0 Partition 0 listing

listing/part1 Partition 1 listing

listing/part2 Partition 2 listing

listing/objmap Object File Map

listing/srcmap Source File Map

listing/inlrpt Inline Report

listing/options IPA Link Options

listing/cuopts Compiler Options Map

listing/globsym Global Symbols Map

listing/messages Messages and Summary

Table 23 shows the names given to the generated listing sections if a PDS or PDSE
name is specified. In the table, we assume the PDS or PDSE name is
ACCNTING.LISTING, and that three partitions are generated by the IPA Link phase.

Table 23. Listing section names comparison for a specified PDS name

Listing section names generated with
SPLITLIST

Listing section names generated with
NOSPLITLIST

ACCNTING.LISTING(PART0) Partition 0 listing

ACCNTING.LISTING(PART1) Partition 1 listing

ACCNTING.LISTING(PART2) Partition 2 listing

136 User's Guide

Table 23. Listing section names comparison for a specified PDS name (continued)

Listing section names generated with
SPLITLIST

Listing section names generated with
NOSPLITLIST

ACCNTING.LISTING(OBJMAP) Object File Map

ACCNTING.LISTING(SRCMAP) Source File Map

ACCNTING.LISTING(INLRPT) Inline Report

ACCNTING.LISTING(OPTIONS) IPA Link Options

ACCNTING.LISTING(CUOPTS) Compiler Options Map

ACCNTING.LISTING(GLOBSYM) Global Symbols Map

ACCNTING.LISTING(MESSAGES) Messages and Summary

Notes:

1. The SPLITLIST option can only be specified in the IPA Link phase.
2. Repeating a SPLITLIST option is equivalent to specifying it once. The last one

specified is the effective setting.
3. If the SPLITLIST option is specified but the effective location of the listing is

not a z/OS UNIX file system directory, PDS data set, or PDSE data set, then a
diagnostic message will be issued and the IPA Link phase return code will be
at least 8.

4. A z/OS UNIX file system directory name must denote a z/OS UNIX directory
which exists and is accessible by the user prior to the IPA Link. Otherwise, a
diagnostic message will be issued and the minimum return code will be raised
to 16.

5. The PDS name must denote a PDS or PDSE data set which exists and is
accessible by the user prior to the IPA Link. Otherwise, a diagnostic message
will be generated and the minimum return code will be raised to 16.

IPA effects

The SPLITLIST option will be ignored by the IPA Compile phase (since it does not
generate a listing). If -Wc,SPLITLIST is used, the IPA compile step will ignore it.

Predefined macros

None.

Examples

The following examples show how to use SPLITLIST.

Example 1
list must exist prior to executing the IPA link
#
mkdir list

Generate listing sections corresponding to LIST
#
metalc -Wc,"LIST(./list)" -Wc,SPLITLIST -o a.out hello.o

Example 2

Chapter 2. Compiler options 137

list must exist prior to executing the IPA link
#
mkdir list

Since NOLIST is specified, only IPA(MAP) sections are generated
However, the destination directory is the one specified in the NOLIST option
#
metalc -Wc,SPLITLIST -Wc,’NOLIST(./list)’ -WI,MAP -o a.out hello.o

The following provides a JCL example for SPLITLIST:
//USRID1A JOB (359B,2326),’USRID1’,
// MSGLEVEL=(1,1),MSGCLASS=S,CLASS=A,NOTIFY=USRID1
/*JOBPARM T=1,L=300
//ORDER JCLLIB ORDER=(CJT.SCJTPRC)
//*--
//* Compile
//*--
//C0011L01 EXEC MTCC,
// OUTFILE=’USRID1.PASS1.OBJECT(SPLLIST),DISP=SHR’,
// PARM.COMPILE=(’IPA(NOLINK) OPT’,
// ’RENT LO ’)
//SYSIN DD *,DLM=’/>’
int main()
{

return 0;
}
/>
//*--
//* IPA LINK
//*--
//C0011L02 EXEC MTCI,
// OUTFILE=’USRID1.PASS2.OBJECT(SPLLIST),DISP=SHR’,
// PARM.COMPILE=('LIST(USRID1.LISTPDS) IPA(LINK,MAP) OPT',
// ’RENT LO SPLITLIST’)
//OBJECT DD DSN=USRID1.PASS1.OBJECT,DISP=SHR
//SYSIN DD *,DLM=’/>’

INCLUDE OBJECT(SPLLIST)
/>
//

Related information

“LIST | NOLIST” on page 83

SSCOMM | NOSSCOMM
Category

Language element control

Pragma equivalent

None.

Purpose

Allows comments to be specified by two slashes (//), which supports C++ style
comments in C code.

When the SSCOMM option is in effect, it instructs the C compiler to recognize two
slashes (//) as the beginning of a comment, which terminates at the end of the
line. It will continue to recognize /* */ as comments.

138 User's Guide

When the NOSSCOMM compiler option is in effect, /* */ is the only valid
comment format.

Syntax

►►
NOSS
SS ►◄

Defaults

NOSSCOMM

For LANGLVL(STDC99) and LANGLVL(EXTC99), the default is SSCOMM.

Usage

When using the metalc command in z/OS UNIX System Services, the equivalent
option for SSCOMM is -qcpluscmt.

Predefined macros

None.

Examples

If you include your C program in your JCL stream, be sure to change the
delimiters so that your comments are recognized as Enterprise Metal C for z/OS
comments and not as JCL statements:
//COMPILE.SYSIN DD DATA,DLM=@@
void main(){
// Enterprise Metal C for z/OS comment

char *string = "hello world";
// A nested Enterprise Metal C for z/OS /* */ comment
}
@@
//* JCL comment

STRICT | NOSTRICT
Category

Optimization and tuning

Pragma equivalent

#pragma option_override(subprogram_name, "OPT(STRICT)")

Purpose

Used to prevent optimizations done by default at optimization levels OPT(3), and,
optionally at OPT(2), from re-ordering instructions that could introduce rounding
errors.

When the STRICT option is in effect, the compiler performs computational
operations in a rigidly-defined order such that the results are always determinable
and recreatable.

Chapter 2. Compiler options 139

When the NOSTRICT compiler option is in effect, the compiler can reorder certain
computations for better performance. However, the end result may differ from the
result obtained when STRICT is specified.

Syntax

For NOOPT and OPT(2):

►►

SUBSCRIPTWRAP
STRICT (NOSUBSCRIPTWRAP)
NOSTRICT ►◄

For OPT(3):

►►

NOSTRICT
NOSUBSCRIPTWRAP

STRICT (SUBSCRIPTWRAP) ►◄

Defaults

For NOOPT and OPT(2), the default option is STRICT. For OPT(3), the default
option is NOSTRICT.

Usage

STRICT disables the following optimizations:
v Performing code motion and scheduling on computations such as loads and

floating-point computations that may trigger an exception.
v Relaxing conformance to IEEE rules.
v Reassociating floating-point expressions.

In IEEE floating-point mode, NOSTRICT sets FLOAT(MAF). To avoid this behavior,
explicitly specify FLOAT(NOMAF).

STRICT(SUBSCRIPTWRAP) prevents the compiler from assuming that array
subscript expressions will never overflow.

When the NOSTRICT or STRICT(NOSUBSCRIPTWRAP) option is in effect, the
compiler is free to perform operations which might be unsafe when there are
integer overflow operations involving array subscript expressions.

The [NO]STRICT_INDUCTION setting supersedes
STRICT([NO]SUBSCRIPTWRAP) or NOSTRICT, when induction variables are
present in the array subscript expressions.

When STRICT settings in source level pragmas conflict with compilation unit
STRICT settings, the settings in the source level pragmas are applied.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

140 User's Guide

IPA effects

The STRICT settings for each compilation unit and procedure are preserved from
the IPA compile step and respected during the IPA link step. You cannot override
the setting of STRICT by specifying the option on the IPA link step. If you specify
the STRICT option on the IPA link step, the compiler issues a warning message
and ignores the STRICT option. For more information about the IPA link
processing of the STRICT option, see “FLOAT” on page 58.

Predefined macros

None.

STRICT_INDUCTION | NOSTRICT_INDUCTION
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Prevents the compiler from performing induction (loop counter) variable
optimizations. These optimizations may be unsafe (may alter the semantics of your
program) when there are integer overflow operations involving the induction
variables.

When the STRICT_INDUCTION option is in effect, the compiler disables loop
induction variable optimizations.

When the NOSTRICT_INDUCTION compiler option is in effect, the compiler
permits loop induction variable optimizations.

Syntax

►►
NOSTRICT_INDUC
STRICT_INDUC ►◄

Defaults

NOSTRICT_INDUCTION

Usage

Loop induction variable optimizations can change the result of a program if
truncation or sign extension of a loop induction variable occurs as a result of
variable overflow or wrap-around.

The STRICT_INDUCTION option only affects loops which have an induction (loop
counter) variable declared as a different size than a register. Unless you intend
such variables to overflow or wrap-around, use NOSTRICT_INDUCTION.

Chapter 2. Compiler options 141

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

The IPA compile step generates information for the IPA link step.

The IPA link step merges and optimizes your application’s code, and then divides
it into sections for code generation. Each of these sections is a partition. The IPA
link step uses information from the IPA compile step to ensure that an object is
included in a compatible partition.

The compiler sets the value of the STRICT_INDUCTION option for a partition to
the value of the first subprogram that is placed in the partition. During IPA
inlining, subprograms with different STRICT_INDUCTION settings may be
combined in the same partition. When this occurs, the resulting partition is always
set to STRICT_INDUCTION.

You can override the setting of STRICT_INDUCTION by specifying the option on
the IPA link step. If you do so, all partitions will contain that value, and the prolog
section of the IPA link step listing will display the value.

Predefined macros

None.

SUPPRESS | NOSUPPRESS
Category

Listings, messages and compiler information

Pragma equivalent

None.

Purpose

Prevents specific informational or warning messages from being displayed or
added to the listing file, if one is generated.

Syntax

►►
NOSUPP
SUPP (message_identifier) ►◄

Defaults

For C, the default is NOSUPPRESS.

Parameters

message_identifier
Comma separated list of message IDs.

142 User's Guide

Usage

The message ID range that is affected is CJT3000 through CJT4399.

Note that this option has no effect on linker or operating system messages.
Compiler messages that cause compilation to stop, such as (S) and (U) level
messages cannot be suppressed.

If a compilation has no (S) and (U) level messages and all the informational or
warning messages are suppressed by the SUPPRESS option, the compilation return
code is 0.

When you specify NOSUPPRESS with specific message identifiers, the previous
SUPPRESS instances with the same message identifiers lose effect. When you
specify NOSUPPRESS without specific message identifiers, all previous SUPPRESS
instances lose effect. If you specify two or three of the following options, the last
option has precedence:

SUPPRESS(message_identifier)
NOSUPPRESS(message_identifier)
NOSUPPRESS

IPA effects

The SUPPRESS option has the same effect on the IPA link step that it does on a
regular compilation.

Predefined macros

None.

SYSSTATE
Category

Object code control

Pragma equivalent

None.

Purpose

Provides additional SYSSTATE macro parameters to the SYSSTATE macro that is
generated by the compiler.

Syntax

►► SYSSTATE ▼

,
NOASCENV

(ASCENV)
NONE

OSREL (ZOSVnRm)

►◄

Chapter 2. Compiler options 143

Defaults

SYSSTATE(NOASCENV, OSREL(NONE))

Parameters

ASCENV | NOASCENV

Instructs the compiler to automatically generate additional SYSSTATE macros
with the ASCENV parameter to reflect the ASC mode of the function.

The default is NOASCENV, with which no ASCENV parameter appears on the
SYSSTATE macro.

OSREL (NONE | ZOSVnRm)

Provides z/OS release value for the OSREL parameter on the SYSSTATE
macro.

The z/OS release value must be in the form of ZOSVnRm as described in z/OS
MVS Programming: Assembler Services Reference. Valid values for the OSREL
parameter include ZOSV1R6 or later z/OS releases.

The default is NONE, with which no OSREL parameter appears on the
SYSSTATE macro.

Usage

You can specify the SYSSTATE compiler option to enhance the SYSSTATE macro
that is generated by the compiler. With the SYSSTATE option, you can include the
OSREL parameter in the SYSSTATE macro, or have the ASCENV parameter
automatically set, or both.

The effect of the SYSSTATE macro depends on whether you use other system
macros and whether those system macros rely on system variables that are set by
the SYSSTATE macro. For example, if a system macro checks for the OSREL
setting, you might need to include the OSREL parameter; if a system macro used
in an AR mode function checks for the ASCENV setting, you might need to add
the ASCENV parameter. With the SYSSTATE compiler option, you can control how
these parameters can be added to the SYSSTATE macro.

IPA effects

If you specify different SYSSTATE suboptions for compilation units during the IPA
compile step, different SYSSTATE values will be isolated in different partitions
during the IPA link step.

If the SYSSTATE option is specified during the IPA link step, it overrides all other
SYSSTATE settings during the IPA compile step.

Predefined macros

None.

TERMINAL | NOTERMINAL
Category

Listings, messages, and compiler information

144 User's Guide

Pragma equivalent

None.

Purpose

Directs diagnostic messages to be displayed on the terminal.

Syntax

►►
TERM
NOTERM ►◄

Defaults

TERMINAL

Usage

When the TERMINAL compiler option is in effect, it directs all of the diagnostic
messages of the compiler to stderr.

Under z/OS batch, the default for stderr is SYSPRINT.

If you specify the PPONLY option, the compiler turns on TERM.

IPA effects

The TERMINAL compiler option has the same effect on the IPA link step as it does
on a regular compile step.

Predefined macros

None.

Related information

For more information on the PPONLY compiler option, see “PPONLY |
NOPPONLY” on page 112.

TUNE
Category

Optimization and tuning

Pragma equivalent

#pragma options(tune)

Purpose

Tunes instruction selection, scheduling, and other implementation-dependent
performance enhancements for a specific implementation of a hardware
architecture.

Chapter 2. Compiler options 145

Syntax

►► TUN (n) ►◄

Defaults

TUNE(10)

Parameters

n Specifies the group to which a model number belongs as a sub-parameter. If
you specify a model which does not exist or is not supported, a warning
message is issued stating that the suboption is invalid and that the default will
be used. Current models that are supported include:

0 This option generates code that is executable on all models, but it will not
be able to take advantage of architectural differences on the models
specified in the following information.

1 This option generates code that is executable on all models but that is
optimized for the following models:
v 9021-520, 9021-640, 9021-660, 9021-740, 9021-820, 9021-860, and 9021-900
v 9021-xx1, 9021-xx2, and 9672-Rx2 (G1)

2 This option generates code that is executable on all models but that is
optimized for the following models:
v 9672-Rx3 (G2), 9672-Rx4 (G3), and 2003
v 9672-Rx1, 9672-Exx, and 9672-Pxx

3 This option generates code that is executable on all models but that is
optimized for the following and follow-on models: 9672-Rx5 (G4), 9672-xx6
(G5), and 9672-xx7 (G6).

4 This option generates code that is executable on all models but that is
optimized for the model 2064-100 (z900).

5 This option generates code that is executable on all models but that is
optimized for the model 2064-100 (z900) in z/Architecture mode.

6 This option generates code that is executable on all models, but is
optimized for the 2084-xxx (z990) models.

7 This option generates code that is executable on all models, but is
optimized for the 2094-xxx (IBM System z9 Enterprise Class) and 2096-xxx
(IBM System z9 Business Class) models.

8 This option is the default. This option generates code that is executable on
all models, but is optimized for the 2097-xxx (IBM System z10 Enterprise
Class) and 2098-xxx (IBM System z10 Business Class) models.

9 This option generates code that is executable on all models, but is
optimized for the 2817-xxx (IBM zEnterprise 196 (z196)) and 2818-xxx (IBM
zEnterprise 114 (z114)) models.

10 This option generates code that is executable on all models, but is
optimized for the 2827-xxx (IBM zEnterprise EC12 (zEC12)) and 2828-xxx
(IBM zEnterprise BC12 (zBC12)) models.

146 User's Guide

11 This option generates code that is executable on all models, but is
optimized for the 2964-xxx (IBM z13™ (z13)) and the 2965-xxx (IBM z13s
(z13s)) models.

12 This option generates code that is executable on all models, but is
optimized for the 3906-xxx (IBM z14) and 3907-xxx (IBM z14 ZR1) models.

Note: For these system machine models, x indicates any value. For example,
9672-Rx4 means 9672-RA4 through to 9672-RY4 and 9672-R14 through to
9672-R94 (the entire range of G3 processors), not just 9672-RX4.

Usage

The TUNE option specifies the architecture for which the executable program will
be optimized. The TUNE level controls how the compiler selects and orders the
available machine instructions, while staying within the restrictions of the ARCH
level in effect. It does so in order to provide the highest performance possible on
the given TUNE architecture from those that are allowed in the generated code. It
also controls instruction scheduling (the order in which instructions are generated
to perform a particular operation). Note that TUNE impacts performance only; it
does not impact the processor model on which you will be able to run your
application.

Select TUNE to match the architecture of the machine where your application will
run most often. Use TUNE in cooperation with ARCH. TUNE must always be
greater or equal to ARCH because you will want to tune an application for a
machine on which it can run. The compiler enforces this by adjusting TUNE up
rather than ARCH down. TUNE does not specify where an application can run. It
is primarily an optimization option. For many models, the best TUNE level is not
the best ARCH level. For example, the correct choices for model 9672-Rx5 (G4) are
ARCH(2) and TUNE(3). For more information on the interaction between TUNE
and ARCH see “ARCHITECTURE” on page 27.

Note: If the TUNE level is lower than the specified ARCH level, the compiler
forces TUNE to match the ARCH level or uses the default TUNE level, whichever
is greater.

Information on the level of the TUNE option will be generated in your object
module to aid you in diagnosing your program.

IPA effects

The IPA compile step generates information for the IPA link step.

The IPA link step merges and optimizes the application code, and then divides it
into sections for code generation. Each of these sections is a partition.

If you specify the TUNE option for the IPA link step, it uses the value of the
option you specify. The value you specify appears in the IPA link step Prolog
listing section and all Partition Map listing sections.

If you do not specify the option on the IPA link step, the value it uses for a
partition depends upon the TUNE option you specified during the IPA compile
step for any compilation unit that provided code for that partition. If you specified

Chapter 2. Compiler options 147

the same TUNE value for all compilation units, the IPA link step uses that value. If
you specified different TUNE values, the IPA link step uses the highest value of
TUNE.

If the resulting level of TUNE is lower than the level of ARCH, TUNE is set to the
level of ARCH.

The Partition Map section of the IPA link step listing, and the object module
display the final option value for each partition. If you override this option on the
IPA link step, the Prolog section of the IPA link step listing displays the value of
the option.

The Compiler Options Map section of the IPA link step listing displays the value of
the TUNE option that you specified on the IPA compile step for each object file.

Predefined macros

__TUNE__ is predefined to the value specified by the TUNE compiler option.

UNDEFINE
Category

Language element control

Pragma equivalent

None.

Purpose

Undefines preprocessor macro names.

Syntax

►► ▼

,

UNDEF (name) ►◄

Defaults

Not applicable.

Parameters

name
Specifies a preprocessor macro name.

Usage

UNDEFINE(name) removes any value that name may have and makes its value
undefined. For example, if you set OS2 to 1 with DEF(OS2=1), you can use the
UNDEF(OS2) option to remove that value. metalc passes -D and -U to the
compiler, which interprets them as DEFINE and UNDEFINE. For more
information, see Chapter 14, “metalc — Compiler invocation using a customizable
configuration file,” on page 219.

148 User's Guide

Predefined macros

None.

UNROLL | NOUNROLL
Category

Optimization and tuning

Pragma equivalent

#pragma unroll

Purpose

Controls loop unrolling, for improved performance.

Syntax

►►

AUTO
UNROLL YES

NO
n

NOUNROLL ►◄

Defaults

UNROLL(AUTO)

Parameters

YES
Allows the compiler to unroll loops that are annotated (for example, using a
pragma), unless it is overridden by #pragma nounroll.

NO Means that the compiler is not permitted to unroll loops in the compilation
unit, unless unroll or unroll(n) pragmas are specified for particular loops.

AUTO
This option is the default. It enables the compiler to unroll loops that are
annotated (for example, using a pragma) and loops which the compiler has
decided (via heuristics) are appropriate for unrolling. AUTO should only be
specified if you have specified OPTIMIZE(2) or greater and COMPACT is not
specified.

n

Instructs the compiler to unroll loops by a factor of n. In other words, the body
of a loop is replicated to create n copies, and the number of iterations is
reduced by a factor of 1/n. The UNROLL(n) option specifies a global unroll
factor that affects all loops that do not have an unroll pragma already. The
value of n must be a positive integer.

Specifying #pragma unroll(1) or UNROLL(1) option disables loop unrolling,
and is equivalent to specifying #pragma nounroll or UNROLL option.

Chapter 2. Compiler options 149

Usage

The UNROLL compiler option instructs the compiler to perform loop unrolling,
which is an optimization that replicates a loop body multiple times, and adjusts
the loop control code accordingly. Loop unrolling exposes instruction level
parallelism for instruction scheduling and software pipelining and thus can
improve a program's performance. It also increases code size in the new loop body,
which may increase pressure on register allocation, cause register spilling, and
therefore cause a loss in performance. Before applying unrolling to a loop, you
must evaluate these tradeoffs. In order to check if the unroll option improves
performance of a particular application, you should compile your program with
the usual options, run it with a representative workload, recompile it with the
UNROLL option and/or unroll pragmas, and rerun it under the same conditions to
see if the UNROLL option leads to a performance improvement.

Specifying UNROLL without any suboptions is equivalent to specifying
UNROLL(YES).

Specifying NOUNROLL is equivalent to specifying UNROLL(NO).

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

Predefined macros

None.

UPCONV | NOUPCONV
Category

Portability and migration

Pragma equivalent

#pragma options(upconv), #pragma options(noupconv)

Purpose

Specifies whether the unsigned specification is preserved when integral promotions
are performed.

Syntax

►►
NOUPC
UPC ►◄

Defaults

NOUPCONV

150 User's Guide

Usage

The UPCONV option causes the compiler to follow unsignedness preserving rules
when doing C type conversions; that is, when widening all integral types (char,
short, int, long). Use this option when compiling older C programs that depend
on the K&R C conversion rules.

Note: This document uses the term K&R C to refer to the C language plus the
generally accepted extensions produced by Brian Kernighan and Dennis Ritchie
that were in use prior to the ISO standardization of C.

Whenever the UPCONV compiler option is in effect, the usage status of the
UPCONV option is inserted in the object file to aid you in diagnosing a problem
with your program.

Predefined macros

None.

VECTOR | NOVECTOR
Category

Language element control

Pragma equivalent

None.

Purpose

For a runtime environment that supports vector instructions, this option can be
specified to control whether the compiler enables the vector programming support
and automatically takes advantage of vector instructions.

Syntax

►►
NOVECTOR
VECTOR

▼

,
NOAUTOSIMD
NOTYPE

(TYPE)
AUTOSIMD

►◄

Defaults

NOVECTOR(NOTYPE, NOAUTOSIMD)

When running on z/OS V2R3 system, the default is as follows, if neither
LANGLVL(STRICT98) nor LANGLVL(ANSI) is in effect:
v VECTOR(NOTYPE, AUTOSIMD) when all of the following options are in effect:

ARCH(11) or higher levels, FLOAT(AFP(NOVOLATILE)), and HOT.
v VECTOR(NOTYPE, NOAUTOSIMD) when all of the following options are in

effect: ARCH(12), FLOAT(AFP(NOVOLATILE)), and OPT(3).

Chapter 2. Compiler options 151

Note:

v Specifying VECTOR without suboptions is equivalent to VECTOR(TYPE).

Parameters

TYPE | NOTYPE
Enables the support for vector data types, in addition to __vector data types.
The default is NOTYPE.

AUTOSIMD | NOAUTOSIMD
Enables the automatic SIMDization or automatic vectorization optimization
that uses Single Instruction Multiple Data (SIMD) instructions where possible,
which calculate several results at one time and is faster than calculating each
result sequentially. This optimization is available only when HOT is in effect.
The default is NOAUTOSIMD.

Usage

The VECTOR option is effective only when ARCH(11) or higher levels and
FLOAT(AFP(NOVOLATILE)) are in effect.

IBM z13 (z13) and IBM z13s (z13s) hardware introduced the support for vector
instructions under the Vector Facility for z/Architecture. The newest generation of
the hardware with the vector enhancements facility 1 and vector packed decimal
facility further enhances the support for vector instructions.

The VECTOR option enables the __vector data types for vector programming
support.

The VECTOR option provides potential performance improvements in the
following aspects: fixed point decimal operations, built-in library functions,
operations on binary floating-point double, float, and long double data types, and
SIMD instructions.

The vector or SIMD code must run in the following runtime environments that
support vector instructions and vector context switching:
v z/OS V2.1 with PTF for APAR PI12281 or later.
v z/OS image running on z/VM® V6.3 with PTF for APAR VM65733 or later.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

IPA effects

If you specify the AUTOSIMD suboption on the IPA link step, it uses this
suboption for all partitions. The IPA link step Prolog and all Partition Map sections
of the IPA link step listing display this suboption.

If you do not specify the AUTOSIMD suboption on the IPA link step, the value
used for a partition depends on the value that you specified for the IPA compile
step for each compilation unit that provided code for that partition.

If you specify the NOVECTOR option, or the TYPE, NOTYPE, or NOAUTOSIMD
suboption on the IPA link step, the compiler ignores them.

152 User's Guide

Predefined macros

__VEC__ is defined to 10402 when VECTOR is in effect.

Related information
v “ARCHITECTURE” on page 27
v “FLOAT” on page 58
v “LANGLVL” on page 79

WARN64 | NOWARN64
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Generates diagnostic messages, which enable checking for possible data conversion
problems between 32-bit and 64-bit compiler modes.

Syntax

►►
NOWARN64
WARN64 ►◄

Defaults

NOWARN64

Usage

Use the FLAG(I) option to display any informational messages.

WARN64 warns you about any code fragments that have the following types of
portability errors:
v A constant that selected an unsigned long int data type in 31-bit mode may fit

within a long int data type in 64-bit mode
v A constant larger than UINT_MAX, but smaller than ULONGLONG_MAX will

overflow in 31-bit mode, but will be acceptable in an unsigned long or signed
long in 64-bit mode

It also warns you about the following types of possible portability errors:
v Loss of digits when you assign a long type to an int type
v Change in the result when you assign an int to a long type
v Loss of high-order bytes of a pointer when a pointer type is assigned to an int

type
v Incorrect pointer when an int type is assigned to a pointer type
v Change of a constant value when the constant is assigned to a long type

Chapter 2. Compiler options 153

Predefined macros

None.

WSIZEOF | NOWSIZEOF
Category

Object code control

Pragma equivalent

#pragma wsizeof(on)

Purpose

Causes the sizeof operator to return the widened size for function return types.

When the WSIZEOF compiler option is in effect, sizeof returns the size of the
widened type for function return types instead of the size of the original return
type.

When the NOWSIZEOF compiler option is in effect, sizeof returns the size of the
original return type.

Syntax

►►
NOWSIZEOF
WSIZEOF ►◄

Defaults

NOWSIZEOF

Usage

When the sizeof operator was applied to a function return type using the
WSIZEOF compiler option the compiler returns the size of the widened type
instead of the original type. For example, if the following code fragment, was
compiled with an earlier compiler, i would have a value of 4.
char myfunc();
i = sizeof myfunc();

Using the Enterprise Metal C for z/OS compiler, i has a value of 1, which is the
size of the original type char.

The usage status of this option is inserted in the object file to aid you in
diagnosing a problem with your program.

Predefined macros

None.

154 User's Guide

Using compiler listing
If you select the SOURCE or LIST option, the compiler creates a listing that
contains information about the source program and the compilation. If the
compilation terminates before reaching a particular stage of processing, the
compiler does not generate corresponding parts of the listing. The listing contains
standard information that always appears, together with optional information that
is supplied by default or specified through compiler options.

In an interactive environment you can also use the TERMINAL option to direct all
compiler diagnostic messages to your terminal. The TERMINAL option directs
only the diagnostic messages part of the compiler listing to your terminal.

Note: Although the compiler listing is for your use, it is not a programming
interface and is subject to change.

IPA considerations
The listings that the IPA compile step produces are basically the same as those that
a regular compilation produces. Any differences are noted throughout this section.

The IPA link step listing has a separate format from the other compiler listings.
Many listing sections are similar to those that are produced by a regular
compilation. Refer to “Using the IPA link step listing” on page 156 for information
about IPA link step listings.

Compiler listing components
The following information describes the components of a compiler listing. These
are available for regular and IPA compilations. Differences in the IPA versions of
the listings are noted. “Using the IPA link step listing” on page 156 describes
IPA-specific listings.

Heading information

The first page of the listing is identified by the product number, the compiler
version and release numbers, the name of the data set or z/OS UNIX file
containing the source code, the date and time compilation began (formatted
according to the current locale), and the page number.

Note: If the name of the data set or z/OS UNIX file that contains the source code
is greater than 32 characters, it is truncated. Only the right-most 30 characters
appear in the listing.

Prolog section

The Prolog section provides information about the compile-time library, file
identifiers, compiler options, and other items in effect when the compiler was
invoked.

All options except those with no default are shown in the listing. Any problems
with the compiler options appear after the body of the Prolog section.

IPA considerations: If you specify IPA suboptions that are irrelevant to the IPA
compile step, the Prolog does not display them. If IPA processing is not active, IPA
suboptions do not appear in the Prolog. The following information describes the
optional parts of the listing and the compiler options that generate them.

Chapter 2. Compiler options 155

Source program

If you specify the SOURCE option, the listing file includes input to the compiler.

Note: If you specify the SHOWINC option, the source listing shows the included
text after the #include directives.

Includes section

The compiler generates the Includes section when you use include files, and
specify the option SOURCE or LIST.

Cross-Reference Listing

The XREF option generates a cross-reference table that contains a list of the
identifiers from the source program and the line numbers in which they appear.

Structure and Union Maps

You obtain structure and union maps by using the AGGREGATE option. The table
shows how each structure and union in the program is mapped. It contains the
following:
v Name of the structure or union and the elements within the structure or union
v Byte offset of each element from the beginning of the structure or union, and the

bit offset for unaligned bit data
v Length of each element
v Total length of each structure, union, and substructure

Messages

If the preprocessor or the compiler detects an error, or the possibility of an error, it
generates messages. If you specify the SOURCE compiler option, preprocessor
error messages appear immediately after the source statement in error. You can
generate your own messages in the preprocessing stage by using the #error
preprocessor directive.

If you specify the compiler option INFO, the compiler will generate informational
diagnostic messages.

For more information on the compiler messages, see “FLAG | NOFLAG” on page
57, and Enterprise Metal C for z/OS Messages.

Message Summary

This listing section displays the total number of messages and the number of
messages for each severity level.

Using the IPA link step listing
The IPA link step generates a listing file if you specify any of the following
options:
v IPA(MAP)
v LIST

156 User's Guide

IPA link step listing components
The following information describes the components of an IPA link step listing.

Heading information

The first page of the listing is identified by the product number, the compiler
version and release numbers, the central title area, the date and time compilation
began (formatted according to the current locale), and the page number.

In the following listing sections, the central title area will contain the primary input
file identifier:
v Prolog
v Object File Map
v Source File Map
v Compiler Options Map
v Global Symbols Map
v Messages
v Message Summary

In the following listing sections, the central title area will contain the phrase
Partition nnnn, where nnnn specifies the partition number:
v Partition Map

Prolog section

The Prolog section of the listing provides information about the compile-time
library, file identifiers, compiler options, and other items in effect when the IPA
link step was invoked.

The listing displays all compiler options except those with no default. If you
specify IPA suboptions that are irrelevant to the IPA link step, the Prolog does not
display them. Any problems with compiler options appear after the body of the
Prolog section and before the End of Prolog section.

Object File Map

The Object File Map displays the names of the object files that were used as input
to the IPA link step. Specify IPA(MAP) or LIST to generate the Object File Map.

Other listing sections, such as the Source File Map, use the File ID numbers that
appear in this listing section.

z/OS UNIX file names that are too long to fit into a single listing record continue
on subsequent listing records.

Source File Map

The Source File Map listing section identifies the source files that are included in
the object files. The IPA link step generates this section if you specify the
IPA(MAP) option.

Chapter 2. Compiler options 157

The IPA link step formats the compilation date and time according to the locale
you specify with the LOCALE option in the IPA link step. If you do not specify the
LOCALE option, it uses the default locale.

This section appears near the end of the IPA link step listing. If the IPA link step
terminates early due to errors, it does not generate this section.

Compiler Options Map

The Compiler Options Map listing section identifies the compiler options that were
specified during the IPA compile step for each compilation unit that is encountered
when the object file is processed. For each compilation unit, it displays the final
options that are relevant to IPA link step processing. You may have specified these
options through a compiler option or #pragma directive, or you may have picked
them up as defaults.

The IPA link step generates this listing section if you specify the IPA(MAP) option.

Global Symbols Map

The Global Symbols Map listing section shows how global symbols are mapped
into members of global data structures by the global variable coalescing
optimization process.

Each global data structure is limited to 16 MB by the z/OS object architecture. If
an application has more than 16 MB of data, IPA Link must generate multiple
global data structures for the application. Each global data structure is assigned a
unique name.

The Global Symbols Map includes symbol information and file name information
(file name information may be approximate).

The IPA link step generates this listing section if you specify the IPA(MAP) option
and the IPA link step causes global symbols to be coalesced. The Global Symbols
Map is only added to the IPA link step listing if the IPA Link phase optimization
changes the structure and/or layout of the global symbols used by the final
module. If no changes are made, then the Global Symbols Map is not included in
the listing.

Partition Map

The Partition Map listing section describes each of the object code partitions the
IPA link step creates. It provides the following information:
v The reason for generating each partition
v How the code is packaged (the CSECTs)
v The options used to generate the object code
v The function and global data included in the partition
v The source files that were used to create the partition

The IPA link step generates this listing section if you specify the IPA(MAP) option.

158 User's Guide

Messages

If the IPA link step detects an error, or the possibility of an error, it issues one or
more diagnostic messages, and generates the Messages listing section. This listing
section contains a summary of the messages that are issued during IPA link step
processing.

The IPA link step listing sorts the messages by severity. The Messages listing
section displays the listing page number where each message was originally
shown. It also displays the message text, and optionally, information relating the
error to a file name, line (if known), and column (if known).

For more information on compiler messages, see “FLAG | NOFLAG” on page 57
and Enterprise Metal C for z/OS Messages.

Message Summary

This listing section displays the total number of messages and the number of
messages for each severity level.

The following table shows the components that are included in the listing
depending on which option is specified during the IPA link phase:

Table 24. IPA link step listing components

Listing Component

-Wc,
IPA
(MAP)

-Wc,
LIST
(des
tina
tion) -V

Compiler Options Map U U

Global Symbols Map ** U U

Message Summary U U U

Messages * U U U

Object File Map U U

Partition Map U U

Prolog U U U

Source File Map U U

* This section is only generated if diagnostic messages are issued.

** This section is only generated if the IPA Link phase coalesces global variables.

Chapter 2. Compiler options 159

160 User's Guide

Chapter 3. Compiling

This information describes how to compile your program with the Enterprise
Metal C for z/OS compiler. For specific information about compiler options, see
Chapter 2, “Compiler options,” on page 7.

The Enterprise Metal C for z/OS compiler analyzes the source program and
translates the source code into machine instructions that are known as object code.

You can perform compilations under z/OS batch, TSO, or the z/OS UNIX System
Services environment.

Input to the compiler
The following information describes how to specify input to the Enterprise Metal C
for z/OS compiler for a regular compilation, or the IPA compile step. For more
information about input for IPA, refer to Chapter 4, “Using IPA link step with
programs,” on page 185.

If you are compiling a C program, input for the compiler consists of the following:
v Your Enterprise Metal C for z/OS source program
v The Enterprise Metal C for z/OS supported standard header files
v Your header files

When you invoke the Enterprise Metal C for z/OS compiler, the operating system
locates and runs the compiler. To run the compiler, you need the default data set
CJT.SCJTCMP, which is supplied by IBM. The locations of the compiler and the
runtime library were determined by the system programmer who installed the
product. The compiler and library should be in the STEPLIB, JOBLIB, LPA, or
LNKLST concatenations. LPA can be from either specific modules (IEALPAxx) or a
list (LPALSTxx). See the cataloged procedures shipped with the product in
Chapter 9, “Cataloged procedures,” on page 199.

Note: For z/OS UNIX System Services file names, unless they appear in JCL, file
names, which contain the special characters blank, backslash, and double quotation
mark, must escape these characters. The escape character is backslash (\).

Primary input

For a C program, the primary input to the compiler is the data set that contains
your source program. If you are running the compiler in batch, identify the input
source program with the SYSIN DD statement. You can do this by either defining
the data set that contains the source code or by placing your source code directly
in the JCL stream. In TSO or in z/OS UNIX System Services, identify the input
source program by name as a command line argument. The primary input source
file can be any one of the following:
v A sequential data set
v A member of a partitioned data set
v All members of a partitioned data set
v A z/OS UNIX file
v All files in a z/OS UNIX directory

© Copyright IBM Corp. 2018 161

Secondary input

For a C program, secondary input to the compiler consists of data sets or
directories that contain include files. Use the LSEARCH and SEARCH compiler
options, or the SYSLIB DD statement when compiling in batch, to specify the
location of the include files.

Related information
v “LSEARCH | NOLSEARCH” on page 91
v “SEARCH | NOSEARCH” on page 126
v “Specifying include file names” on page 173
v “Search sequences for include files” on page 182
v “Using include files” on page 173

Output from the compiler
You can specify compiler output files as one or more of the following:
v A sequential data set
v A member of a partitioned data set
v A partitioned data set
v A z/OS UNIX file
v A z/OS UNIX directory

For valid combinations of input file types and output file types, refer to Table 27
on page 164.

Specifying output files
You can use compile options to specify compilation output files as follows:

Table 25. Compile options that provide output file names

Output File Type Compiler Option

Listing File SOURCE (filename), LIST(filename)
Note: All listings must go to the same file. The
last given location is used.

Preprocessor Output PPONLY(filename)

Events File EVENTS(filename)

When compiler options that generate output files are specified without suboptions
to identify the output files, and, in the case of a batch job, the designated ddnames
are not allocated, the output file names are generated based on the name of the
source file. For data sets, the compiler generates a low-level qualifier by appending
a suffix to the data set name of the source, as Table 26 on page 163 shows.

If you compile source from z/OS UNIX files without specifying output file names
in the compiler options, the compiler writes the output files to the current working
directory. The compiler does the following to generate the output file names:
v Appends a suffix, if it does not exist
v Replaces the suffix, if it exists

The following default suffixes are used:

162 User's Guide

Table 26. Defaults for output file types

Output File Type z/OS File z/OS UNIX File

Asembler source file ASM s

Listing file LIST lst

Preprocessor Output EXPAND i

Notes:

1. Output files default to the z/OS UNIX directory if the source resides in the
z/OS UNIX file system, or to an MVS data set if the source resides in a data
set.

2. If you have specified the OE option, see “OE | NOOE” on page 104 for a
description of the default naming convention.

3. If you supply inline source in your JCL, the compiler will not generate an
output file name automatically. You can specify a file name on a ddname in
your JCL.

4. If you are using #pragma options to specify a compile-time option that
generates an output file, you must use a ddname to specify the output file
name when compiling under batch. The compiler will not automatically
generate file names for output that is created by #pragma options.

Listing output

Note: Although the compiler listing is for your use, it is not a programming
interface and is subject to change.

To create a listing file that contains source , use the SOURCE or LIST compile
option. The listing includes the results of the default or specified options of the
CPARM parameter (that is, the diagnostic messages and the object code listing). If
you specify filename with two or more of these compile options, the compiler
combines the listings and writes them to the last file specified in the compile
options. If you did not specify filename, the listing will go to the SYSCPRT DD
name, if you allocated it. Otherwise, the compiler generates a default file name as
described in “LIST | NOLIST” on page 83.

Preprocessor output
If you specify filename with the PPONLY compile option, the compiler writes the
preprocessor output to that file. If you do not specify filename with the PPONLY
option, the compiler stores the preprocessor output in the file that you define in
the SYSUT10 DD statement. If you did not allocate SYSUT10, the compiler
generates a default file name, as described in “PPONLY | NOPPONLY” on page
112.

Chapter 3. Compiling 163

Valid input/output file types
Depending on the type of file that is used as primary input, certain output file
types are allowed. The following table describes these combinations of input and
output files:

Table 27. Valid combinations of source and output file types

Input Source
File

Output Data Set Specified
Without (member) Name,
for example A.B.C

Output Data Set
Specified as
filename(member),
for example A.B.C(D)

Output Specified as
a z/OS UNIX file,
for example a/b/c.o

Output Specified as a
z/OS UNIX directory,
for example a/b

Sequential
Data Set, for
example A.B

1. If the file exists as a
sequential data set,
overwrites it

2. If the file does not exist,
creates sequential data
set

3. Otherwise compilation
fails

1. If the PDS does
not exist, creates
PDS and member

2. If the PDS exists
and member does
not exist, adds
member

3. If the PDS and
member both exist,
then overwrites
the member

1. If the directory
does not exist,
compilation fails

2. If the directory
exists but the file
does not exist,
creates file

3. If the file exists,
overwrites the
file

Not supported

A member of a
PDS using
(member), for
example A.B(C)

1. If the file exists as a
sequential data set,
overwrites it

2. If the file exists as a
PDS, creates or
overwrites member

3. If the file does not exist,
creates PDS and
member

1. If the PDS does
not exist, creates
PDS and member

2. If the PDS exists
and member does
not exist, adds
member

3. If the PDS and
member both exist,
then overwrites
the member

1. If the directory
does not exist,
compilation fails

2. If the directory
exists and the file
with the specified
file name does
not exist, creates
file

3. If the directory
exists and the file
exists, overwrites
file

1. If the directory
does not exist,
compilation fails

2. If the directory
exists and the file
with the file name
MEMBER.ext does
not exist, creates
file

3. If the directory
exists and the file
with the file name
MEMBER.ext also
exists, overwrite
file

All members
of a PDS, for
example A.B

1. If the file exists as a
PDS, creates or
overwrites members

2. If the file does not exist,
creates PDS and
members

3. Otherwise compilation
fails

Not Supported Not Supported 1. If the directory
does not exist,
compilation fails

2. If the directory
exists and the files
with the file
names MEMBER.ext
do not exist,
creates files

3. If the directory
exists and the files
with the file
names MEMBER.ext
exist, overwrites
files

164 User's Guide

Table 27. Valid combinations of source and output file types (continued)

Input Source
File

Output Data Set Specified
Without (member) Name,
for example A.B.C

Output Data Set
Specified as
filename(member),
for example A.B.C(D)

Output Specified as
a z/OS UNIX file,
for example a/b/c.o

Output Specified as a
z/OS UNIX directory,
for example a/b

z/OS UNIX
file, for
example
/a/b/d.c

1. If the file exists as a
sequential data set,
overwrites file

2. If the file does not exist,
creates sequential data
set

3. Otherwise compilation
fails

1. If the PDS does
not exist, creates
the PDS and stores
a member into the
data set

2. If the PDS exists
and member does
not exist, then
adds the member
in the PDS

3. If the PDS and
member both exist,
then overwrites
the member

1. If the directory
does not exist,
compilation fails

2. If the directory
exists but the file
does not exist,
creates file

3. If the file exists,
overwrites the
file

1. If the directory
does not exist,
compilation fails

2. If the directory
exists and the file
does not exist,
creates file

3. If the directory
exists and the file
exists, overwrites
file

z/OS UNIX
directory, for
example a/b/

Not supported Not supported Not supported 1. If the directory
does not exist,
compilation fails

2. If the directory
exists and the files
to be written do
not exist, creates
files

3. If the directory
exists and the files
to be written
already exist,
overwrites files

Compiling under z/OS batch
To compile your C source program under batch, you can either use cataloged
procedures that IBM supplies, or write your own JCL statements.

Using cataloged procedures
You can use one of the following IBM-supplied cataloged procedures. Each
procedure includes a compilation step to compile your program.

Cataloged procedures Task Description

MTCC Compile a program

MTCCA Compile and assemble a program

MTCI Compile a program with IPA link

MTCIA Compile a program with IPA link and assemble

IPA considerations

The MTCC procedure should be used for the IPA compile step. Only the MTCI
procedure applies to the IPA link step.

Chapter 3. Compiling 165

To run the IPA compile step, use the MTCC procedure, and ensure that you specify
the IPA(NOLINK) or IPA compiler option. Note that you must also specify the
LONGNAME compiler option or the #pragma longname directive.

To create an IPA-optimized object module, take the following steps:
1. Run the IPA compile step for each source file in your program to generate IPA

objects.
2. Run the IPA link step once for the entire program to create the assembly source

file.
3. Run the assemble step to create the IPA-optimized object module.
4. Bind the generated IPA-optimized object module to create the final executable.

For further information on IPA, see Chapter 4, “Using IPA link step with
programs,” on page 185.

Using special characters
When invoking the compiler directly, if a string contains a single quotation mark (')
it should be written as two single quotation marks ('') as in:
//COMPILE EXEC PGM=CJTDRVR,PARM=’OPTFILE(’’USERID.OPTS’’)’

If you are using the same string to pass a parameter to a cataloged procedure, use
four single quotation marks (''''), as follows:
//COMPILE EXEC MTCC,CPARM=’OPTFILE(’’’’USERID.OPTS’’’’)’

A backslash need not precede special characters in z/OS UNIX System Services file
names that you use in DD cards. For example:
//SYSLIN DD PATH='/u/user1/obj 1.o'

A backslash must precede special characters in z/OS UNIX file names that you use
in the PARM statement. For example:
//STEP1 EXEC PGM=CJTDRVR,PARM=’OPTFILE(/u/user1/opt\ file)’

Specifying source files
For non-z/OS UNIX files, use this format of the SYSIN DD statement:
//SYSIN DD DSNAME=dsname,DISP=SHR

If you specify a PDS without a member name, all members of that PDS are
compiled.

Note: If you specify a PDS as your primary input, you must specify either a PDS
or a z/OS UNIX directory for your output files.

For z/OS UNIX files, use this format of the SYSIN DD statement:
//SYSIN DD PATH=’pathname’

You can specify compilation for a single file or all source files in a z/OS UNIX
directory, for example:
//SYSIN DD PATH=’/u/david’
//* All files in the directory /u/david are compiled

Note: If you specify a z/OS UNIX directory as your primary input, you must
specify a z/OS UNIX directory for your output files.

166 User's Guide

When you place your source code directly in the input stream, use the following
form of the SYSIN DD statement:
//SYSIN DD DATA,DLM=

rather than:
//SYSIN DD *

When you use the DD * convention, the first comment statement that starts in
column 1 will terminate the input to the compiler. This is because /*, the
beginning of a C comment, is also the default delimiter.

Note: To treat columns 73 through 80 as sequence numbers, use the SEQUENCE
compiler option.

For more information about the DD * convention, refer to the publications that are
listed in z/OS Information Roadmap.

Specifying include files
Example: Use the SEARCH option to search data sets userid.AA.**.
//C EXEC PGM=CJTDRVR,PARM='SEARCH(''AA.+'')'

You can also use the SYSLIB and USERLIB DD statements (note that the SYSLIB
DD statement has a different use if you are running the IPA link step). To specify
more than one library, concatenate multiple DD statements as follows:
//SYSLIB DD DSNAME=USERLIB,DISP=SHR
// DD DSNAME=DUPX,DISP=SHR

Note: If the concatenated data sets have different block sizes, either specify the
data set with the largest block size first, or use the DCB=dsname subparameter on
the first DD statement. For example:
//USERLIB DD DSNAME=TINYLIB,DISP=SHR,DCB=BIGLIB
// DD DSNAME=BIGLIB,DISP=SHR

where BIGLIB has the largest block size.

Specifying output files
You can specify output file names as suboptions to the compiler. You can direct the
output to a PDS member as follows:
// CPARM=’SOURCE(MY.LISTINGS(MEMBER1))’

You can direct the output to a z/OS UNIX file as follows:
// CPARM=’SOURCE(./listings/member1.lst)’

You can also use DD statements to specify output file names.

To specify non-z/OS UNIX files, use DD statements with the DSNAME parameter.
For example:
//SYSLIN DD DSN=USERID.TEST.OBJ(HELLO),DISP=SHR

To specify z/OS UNIX directories or z/OS UNIX files, use DD statements with the
PATH parameter.
//SYSLIN DD PATH=’/u/david/test.o’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC)

Chapter 3. Compiling 167

Note: Use the PATH and PATHOPTs parameters when specifying z/OS UNIX files
in the DD statements.

If you do not specify the output filename as a suboption, and do not allocate the
associated ddname, the compiler generates a default output file name. There are
two situations when the compiler will not generate a default file name:
v You supply instream source in your JCL.
v You are using #pragma options to specify a compile-time option that generates

an output file.

Compiling in the z/OS UNIX System Services environment
z/OS UNIX C programs with source code in z/OS UNIX files or data sets must be
compiled to create output object files residing either in z/OS UNIX files or data
sets.

You can compile application source code to generate an HLASM source file using
the metalc command.

You can invoke the compiler by using the metalc utility, which uses an external
configuration file to control the invocation of the compiler.
v The metalc utility supports -q options syntax as the primary method of

specifying options on the command line.
v The metalc utility is unaffected by the value assigned to the STEPLIB

environment variable in the z/OS UNIX Systems Services session; it obtains the
STEPLIB from the configuration file.

v The PATH environment variable must contain the path to the metalc bin
directory.

v The metalc utility uses -O4 and -O5 or -qipa as the mechanism for invoking
IPA.

Note: For more information on the metalc utility, see Chapter 14, “metalc —
Compiler invocation using a customizable configuration file,” on page 219.

For information on customizing your environment to compile in the z/OS UNIX
System Services environment, see “Setting up a configuration file” on page 221.

Use the metalc utility to compile a C application program from the z/OS shell. The
syntax is:
metalc [-options ...] [file.c ...] [file.a ...] [file.o ...] [-l libname]

where:

options are metalc options.

file.c is a source file. Note that C source files have a file extension of lowercase
c.

file.o 1 is an object file.

file.a 1 is an archive file.

libname 1
is an archive library.

Note:

168 User's Guide

1. This file type is supported only when it contains valid input for IPA link and
the IPA option is specified, otherwise it will not produce any output.

The metalc utility supports IPA. For information on how to invoke the IPA compile
step using metalc, refer to “Invoking IPA using metalc utility.”

Note: You can compile application program source and objects from within the
shell using the metalc utility. You must keep track of and maintain all the source
and object files for the application program. You can use the make utility to
maintain your z/OS UNIX System Services application source files and object files
automatically when you update individual modules. The make utility will only
compile files that have changed since the last make run.

Related information

Chapter 8, “Building Enterprise Metal C for z/OS programs,” on page 197

Building a 64-bit application using metalc utility
To build a 64-bit application using the metalc utility, you must explicitly specify
the -q64 or -Wc,lp64 compiler option on the command line to ensure 64-bit
compiles.

Invoking IPA using metalc utility
You can invoke the IPA compile step, the IPA link step, or both using the metalc
utility. The step that you invoke depends upon the invocation parameters and type
of files specified. You must use the -qipa, -O4, or -O5 options. You can specify IPA
suboptions as colon-separated keywords.

If you invoke the metalc utility by specifying the -c compiler option and at least
one source file, metalc automatically specifies IPA(NOLINK) and automatically
invokes the IPA compile step.

The following metalc command invokes the IPA compile step for the source file
hello.c:
metalc -c -qipa hello.c

If you invoke metalc with at least one source file for compilation and any number
of object files, and do not specify the -c option, metalc invokes the IPA compile
step once for each compilation unit. It then invokes the IPA link step once for the
entire program.

Example: The following metalc command invokes the IPA compile step and the
IPA link step, and produces the assembly output in myfunc.s:
metalc -o myfunc.s -qipa myfunc.c

See Chapter 14, “metalc — Compiler invocation using a customizable configuration
file,” on page 219 for more information about the metalc utility.

Specifying options for the IPA compile step

You can pass options to the IPA compile step, as follows:
v You can pass IPA compiler option suboptions by specifying -qipa= for metalc,

followed by the suboptions.

Chapter 3. Compiling 169

v You can pass compiler options by specifying -q for metalc, followed by the
options.

Compiling with IPA
If you request Interprocedural Analysis (IPA) through the IPA compiler option, the
compilation process changes significantly. IPA instructs the compiler to optimize
your program across compilation units, and to perform optimizations that are not
otherwise available with the compiler.

Differences between the IPA compilation process and the regular compilation
process are noted throughout this topic.

Figure 1 shows the flow of processing for a regular compilation:

IPA processing consists of two separate steps, called the IPA compile step and the
IPA link step.

IPA compile step
The IPA compile step is similar to a regular compilation.

You invoke the IPA compile step for each source file in your application by
specifying the IPA(NOLINK) compiler option or by specifying -Wc,IPA in z/OS
UNIX System Services. The output of the IPA compile step is an object file that
contains IPA information. The IPA information is an encoded form of the
compilation unit with additional IPA-specific compile-time optimizations.

Figure 2 on page 171 shows the flow of IPA compile step processing.

Analysis phase

Invocation parameters

Compiler

Code generation

phase

Source file(s)
Listing sections
Messages

HLASM source code
Listing sections
Messages

Figure 1. Flow of regular compiler processing

170 User's Guide

The same environments that support a regular compilation also support the IPA
compile step.

IPA link step
The IPA link step is similar to the binding process.

You invoke the IPA link step by specifying the IPA(LINK) compiler option in z/OS
UNIX System Services. This step links the user application program together by
combining object files with IPA information. It merges IPA information, performs
IPA Link-time optimizations, and generates the final assembly code.

Each application program module must be built with a single invocation of the IPA
link step. All parts must be available during the IPA link step; missing parts may
result in termination of IPA Link processing.

Figure 3 on page 172 shows the flow of IPA link step processing:

Analysis phase

Invocation parameters

(IPA or IPA(NOLINK),

other suboptions may be

specified)

Compiler

IPA compile

optimization phase

IPA object

creation

Source file(s)

Listing sections

Messages

Messages

IPA object(s)

Messages

Figure 2. IPA compile step processing

Chapter 3. Compiling 171

Refer to Chapter 4, “Using IPA link step with programs,” on page 185 for
information about the IPA link step.

Working with object files
z/OS object files are composed of a stream of 80 byte records. These may be binary
object records, or link control statements. It is useful to be able to browse the
contents of an object file, so that some basic information can be determined.

Browsing object files
Object files, which are sequential data sets or are members of a PDS or PDSE
object library, can be browsed directly using the Program Development Facility
(PDF) edit and browse options.

Object files, which are z/OS UNIX files, can be browsed using the PDF obrowse
command. z/OS UNIX files can be browsed using the TSO ISHELL command, and
then using the V (View) action (V on the Command line, or equivalently Browse
records from the File pull-down menu). This will result in a pop-up window for
entering a record length. To force display in F 80 record mode, one would issue the
following sequence of operations:
1. Enter the command: obrowse file.o

Note: The file name is deliberately typed with an extra character. This will
result in the display of an obrowse dialog panel with an error message that the
file is not found. After pressing Enter, a second obrowse dialog is displayed to
allow the file name to be corrected. This panel has an entry field for the record
length.

2. Correct the file name and enter 80 in the record length entry field.
3. Browse the object records as you would a F 80 data set.

Invocation parameters

(IPA(LINK, CONTROL(dsn)))

(other IPA suboptions may be

specified)

Primary input file (object)

IPA control file

Secondary input (object, load module)

Listing sections

Messages

Listing sections

Messages

Listing sections

Messages

Final assembly code

Compiler

IPA object

link phase

Analysis/

optimization phase

Code generation

phase

Figure 3. IPA link step processing

172 User's Guide

The hex display mode (enabled by the HEX ON primary command) allows the
value of each byte to be displayed.

Identifying object file variations
Browse the object file and scroll to the end of the file. The last few records contain
a character string, which lists the options used during compilation.

In addition, it is possible to identify the compiler mode used to generate the object
file. For example, option text "NOIPA" indicates NOIPA is effect.

Using feature test macros
The compiler predefines feature test macros when certain features are available.
For example, the _LONG_LONG macro is predefined if the compiler supports the
long long data type.

Using include files
The #include preprocessor directive allows you to retrieve source statements from
secondary input files and incorporate them into your C program.

The syntax is:

►► #include < filename >
//

" filename "
//

►◄

The angle brackets specify system include files, and double quotation marks
specify user include files.

When you use the #include directive, you must be aware of the following:
v The library search sequence, the search order that the compiler uses to locate the

file. See “Search sequences for include files” on page 182 for more information
on the library search sequence.

v The file-naming conversions that the compiler performs.
v The area of the input record that contains sequence numbers when you are

including files with different record formats. See Enterprise Metal C for z/OS
Language Reference for more information on #pragma sequence.

Specifying include file names
You can use the SEARCH and LSEARCH compiler options to specify search paths
for system include files and user include files. For more information on these
options, see “LSEARCH | NOLSEARCH” on page 91 and “SEARCH |
NOSEARCH” on page 126.

You can specify filename of the #include directive in the following format:

Chapter 3. Compiling 173

►► #include
//

▼ ▼

▼

/ .

path qualifier
.

qualifier
' (member) '

DD:ddname
(member)

►◄

The leading double slashes (//) not followed by a slash (in the first character of
filename) indicate that the file is to be treated as a non-z/OS UNIX file, hereafter
called a data set.

Note:

1. filename immediately follows the double slashes (//) without spaces.
2. Absolute data set names are specified by putting single quotation marks (')

around the name. Refer to the syntax diagram in this topic for this
specification.

3. Absolute z/OS UNIX file names are specified by putting a leading slash (/) as
the first character in the file name.

4. ddnames are always considered absolute.

Forming file names
Refer to “Determining whether the file name is in absolute form” on page 178 for
information on absolute file names. When the compiler performs a library search, it
treats filename as either a z/OS UNIX System Services file name or a data set name.
This depends on whether the library being searched is a z/OS UNIX library or
MVS library. If the compiler treats filename as a z/OS UNIX file name, it does not
perform any conversions on it. If it treats filename as a data set name (DSN), it
performs the following conversion:
v For the first DSN format:

►► ▼ ▼

/ .

path qualifier
►◄

The compiler:
1. Uppercases qualifier and path

2. Truncates each qualifier and path to 8 characters
3. Converts the underscore character (which is invalid for a DSN) to the '@'

character (hex 7c)
v For the second DSN format:

►► ▼

.

' qualifier '
(member)

►◄

The compiler:
1. Uppercases the qualifier and member

174 User's Guide

2. Converts the underscore character (which is invalid for a DSN) to the '@'
character (hex 7c)

v For the third DSN format:

►► DD:ddname
(member)

►◄

The compiler:
1. Uppercases the DD:, ddname, and member

2. Converts the underscore character (which is invalid for a DSN) to the '@'
character (hex 7c)

Forming data set names with LSEARCH | SEARCH options
When the filename specified in the #include directive is not in absolute form, the
compiler combines it with different types of libraries to form complete data set
specifications. These libraries may be specified by the LSEARCH or SEARCH
compiler options. When the LSEARCH or SEARCH option indicates a data set
then, depending on whether it is a ddname, sequential data set, or PDS, different
parts of filename are used to form the ddname or data set name.

Forming DDname

Example: The leftmost qualifier of the filename in the #include directive is used
when the filename is to be a ddname:

Invocation:
SEARCH(DD:SYSLIB)

Include directive:
#include "sys/afile.g.h"

Resulting ddname:
DD:SYSLIB(AFILE)

In this example, if your header file includes an underscore (_), for example,
#include "sys/afile_1.g.h", the resulting ddname is DD:SYSLIB(AFILE@1).

Forming sequential data set names

Example: You specify libraries in the SEARCH | LSEARCH options as sequential
data sets by using a trailing period followed by an asterisk (.*), or by a single
asterisk (*). See “LSEARCH | NOLSEARCH” on page 91 to understand how to
specify sequential data sets. All qualifiers and periods (.) in filename are used for
sequential data set specification.

Invocation:
SEARCH(AA.*)

Include directive:
#include "sys/afile.g.h"

Resulting fully qualified data set name:
userid.AA.AFILE.G.H

Chapter 3. Compiling 175

Forming PDS name with LSEARCH | SEARCH + specification

Example: To specify libraries in the SEARCH and LSEARCH options as PDSs, use
a period that is followed by a plus sign (.+), or a single plus sign (+). See
“LSEARCH | NOLSEARCH” on page 91 to understand how PDSs are specified.
When this is the case then all the paths, slashes (replaced by periods), and any
qualifiers following the leftmost qualifier of the filename are appended to form the
data set name. The leftmost qualifier is then used as the member name.

Invocation:
SEARCH(’AA.+’)

Include directive:
#include "sys/afile.g.h"

Resulting fully qualified data set name:
AA.SYS.G.H(AFILE)

and

Invocation:
SEARCH(’AA.+’)

Include directive:
#include "sys/bfile"

Resulting fully qualified data set name:
AA.SYS(BFILE)

Forming PDS with LSEARCH | SEARCH Options without +

Example: When the LSEARCH or SEARCH option specifies a library but it neither
ends with an asterisk (*) nor a plus sign (+), it is treated as a PDS. The leftmost
qualifier of the filename in the #include directive is used as the member name.

Invocation:
SEARCH(’AA’)

Include directive:
#include "sys/afile.g.h"

Resulting fully qualified data set name:
AA(AFILE)

Examples of forming data set names

The following table gives the original format of the filename and the resulting
converted name when you specify the NOOE option:

Table 28. Include filename conversions when NOOE is specified

#include Directive Converted Name

Example 1. This filename is absolute because single quotation marks (') are used. It is a
sequential data set. A library search is not performed. LSEARCH is ignored.

#include "’USER1.SRC.MYINCS’" USER1.SRC.MYINCS

Example 2. This filename is absolute because single quotation marks (') are used. The
compiler attempts to open data set COMIC/BOOK.OLDIES.K and fails because it is not a valid
data set name. A library search is not performed when filename is in absolute form.
SEARCH is ignored.

#include <’COMIC/BOOK.OLDIES.K’> COMIC/BOOK.OLDIES.K

176 User's Guide

Table 28. Include filename conversions when NOOE is specified (continued)

#include Directive Converted Name

Example 3.

SEARCH(LIB1.*,LIB2.+,LIB3) #include
"sys/abc/xx"

v first opt in SEARCH SEQUENTIAL FILE =
userid.LIB1.XX

v second opt in SEARCH PDS =
userid.LIB2.SYS.ABC(XX)

v third opt in SEARCH PDS = userid.LIB3(XX)

Example 4.

SEARCH(LIB1.*,LIB2.+,LIB3) #include
"Sys/ABC/xx.x"

v first opt in SEARCH SEQUENTIAL FILE =
userid.LIB1.XX.X

v second opt in SEARCH PDS =
userid.LIB2.SYS.ABC.X(XX)

v third opt in SEARCH PDS = userid.LIB3(XX)

Example 5.

SEARCH(LIB1.*,LIB2.+,LIB3) #include
<sys/name_1>

v first opt in SEARCH SEQUENTIAL FILE =
userid.LIB1.NAME@1

v second opt in SEARCH PDS =
userid.LIB2.SYS(NAME@1)

v third opt in SEARCH PDS = userid.LIB3(NAME@1)

Example 6.

SEARCH(LIB1.*,LIB2.+,LIB3) #include
<Name2/App1.App2.H>

v first opt in SEARCH SEQUENTIAL FILE =
userid.LIB1.APP1.APP2.H

v second opt in SEARCH PDS =
userid.LIB2.NAME2.APP2.H(APP1)

v third opt in SEARCH PDS = userid.LIB3(APP1)

Example 7. The PDS member named YEAREND of the library associated with the ddname
PLANLIB is used. A library search is not performed when filename in the #include
directive is in absolute form (ddname is used). SEARCH is ignored.

#include <dd:planlib(YEAREND)> DD:PLANLIB(YEAREND)

Search sequence
The following diagram describes the compiler file searching sequence:

Chapter 3. Compiling 177

▌1▐ The compiler opens the file without library search when the file name that
is specified in #include is in absolute form. This also means that it
bypasses the rules for the SEARCH and LSEARCH compiler options, and
for POSIX.2. See Figure 5 on page 179 for more information on absolute file
testing.

▌2▐ When the file name is not in absolute form, the compiler evaluates each
option in SEARCH and LSEARCH to determine whether to treat the file as
a data set or a z/OS UNIX System Services file search. The
LSEARCH/SEARCH opt testing here is described in Figure 6 on page 181.

▌3▐ When the #include file name is not absolute, and is preceded by exactly
two slashes (//), the compiler treats the file as a data set. It then bypasses
all z/OS UNIX file options of the SEARCH and LSEARCH options in the
search.

Determining whether the file name is in absolute form
The compiler determines if the file name that is specified in #include is in absolute
form as follows:

Ignore

SEARCH/LSEARCH

& POSIX.2 rules;

search file directly

Create

dataset

path

& search

Ignore

this search

opt

End of

SEARCH/

LSEARCH

processing

Create

HFS file

path

& search

#include

is absolute

filename

Start

Yes

Yes

Yes

Yes

No

No

No

No

This

of SEARCH/LSEARCH

is DS

opt
#include

preceded by

filename

II

More opt

1

2

3

Figure 4. Overview of include file searching

178 User's Guide

▌1▐ The compiler first checks whether you specified OE.

▌2▐ When you specify OE, if double slashes (//) do not precede filename, and
the file name starts with a slash (/), then filename is in absolute form and
the compiler opens the file directly as a z/OS UNIX file. Otherwise, the file
is not an absolute file and each opt in the SEARCH or LSEARCH compiler
option determines if the file is treated as a z/OS UNIX file or data set in
the search for the include file.

▌3▐ When OE is specified, if double slashes (//) precede filename, and the file
name starts with a slash (/), then filename is in absolute form and the
compiler opens the file directly as a z/OS UNIX file. Otherwise, the file is
a data set, and more testing is done to see if the file is absolute.

▌4▐ If filename is enclosed in single quotation marks ('), then it is an absolute
data set. The compiler directly opens the file and ignores the libraries that
are specified in the LSEARCH or SEARCH options. If there are any invalid
characters in filename, the compiler converts the invalid characters to at
signs (@, hex 7c).

▌5▐ If you used the ddname format of the #include directive, the compiler uses
the file associated with the ddname and directly opens the file as a data
set. The libraries that are specified in the LSEARCH or SEARCH options
are ignored.

▌6▐ If none of the conditions are true then filename is not in absolute format

OE
YesNo

No

No

No
No

No

No Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

filename

preceded
by //

filename

starts with
/

Start

dataset

dataset
but not

absolute

Absolute
dataset

filename

starts with
/

filename

enclosed by
single quotes

filename

enclosed by
single quotes

filename

starts with
DD:

filename

starts with
DD:

Absolute
HFS file

Not absolute
dataset

or HFS file

Absolute
HFS file

Figure 5. Testing if filename is in absolute form

Chapter 3. Compiling 179

and each opt in the SEARCH or LSEARCH compiler option determines if
the file is a z/OS UNIX file or a data set and then searches for the include
file.

▌7▐ If none of the conditions are true, then filename is a data set, but it is not in
absolute form. Only opts in the SEARCH or LSEARCH compiler option
that are in data set format are used in the search for include file.

For example:
Options specified:

OE

Include Directive:

#include "apath/afile.h" NOT absolute, z/OS UNIX file/
MVS (no starting slash)

#include "/apath/afile.h" absolute z/OS UNIX file,
(starts with 1 slash)

#include "//apath/afile.h.c" NOT absolute, MVS (starts with 2 slashes)
#include "a.b.c" NOT absolute, z/OS UNIX file/

MVS (no starting slash)
#include "///apath/afile.h" absolute z/OS UNIX file,

(starts with 3 slashes)
#include "DD:SYSLIB" NOT absolute, z/OS UNIX file/

MVS (no starting slash)
#include "//DD:SYSLIB" absolute, MVS (DD name)
#include "a.b(c)" NOT absolute, z/OS UNIX file/

MVS (no starting slash)
#include "//a.b(c)" NOT absolute, OS/MVS (PDS member name)

Using SEARCH and LSEARCH
When the file name in the #include directive is not in absolute form, the opts in
SEARCH are used to find system include files and the opts in LSEARCH are used
to find user include files. Each opt is a library path and its format determines if it
is a z/OS UNIX System Services path or a data set path:

180 User's Guide

Note:

1. If opt is preceded by double slashes (//) and opt does not start with a slash (/),
then this path is a data set path.

2. If opt is preceded by double slashes (//) and opt starts with a slash (/), then
this path is a z/OS UNIX path.

3. If opt is not preceded by double slashes (//) and opt starts with a slash (/),
then this path is a z/OS UNIX path.

4. If opt is not preceded by double slashes (//), opt does not start with a slash (/)
and NOOE is specified then this path is a data set path.

For example:

SEARCH(./PATH) is an explicit z/OS UNIX path
OE SEARCH(PATH) is treated as a z/OS UNIX path
NOOE SEARCH(PATH) is treated as a non-z/OS UNIX path
NOOE SEARCH(//PATH) is an explicit non-z/OS UNIX path

Example: When combining the library with the file name specified on the #include
directive, it is the form of the library that determines how the include file name is
to be transformed:
Options specified:

NOOE LSEARCH(Z, /u/myincs, (*.h)=(LIB(mac1)))

Include Directive:

#include "apath/afile.h"

Resulting fully qualified include names:

1. userid.Z(AFILE) (Z is non-z/OS UNIX file so file name is treated
as non-z/OS UNIX file)

Yes

NoNoNo

No

Yes

Yes

Yes

For each in

SEARCH/LSEARCH

opt

HFS path

opt has

a /

opt

preceded

by //

opt

start with

/

OE

specified

data set

path

Figure 6. Determining if the SEARCH/LSEARCH opt is a z/OS UNIX path

Chapter 3. Compiling 181

2. /u/myincs/apath/afile.h (/u/myincs is z/OS UNIX file so
file name is treated as z/OS UNIX file)
3. userid.MAC1.H(AFILE) (afile.h matches *.h)

Example: A z/OS UNIX path specified on a SEARCH or LSEARCH option only
combines with the file name specified on an #include directive if the file name is
not explicitly stated as being MVS only. A file name is explicitly stated as being
MVS only if two slashes (//) precede it, and filename does not start with a slash
(/).
Options specified:

OE LSEARCH(/u/myincs, q, //w)

Include Directive:

#include "//file.h"

Resulting fully qualified include names

userid.W(FILE)

/u/myincs and q would not be combined with //file.h because both paths are
z/OS UNIX paths and //file.h is explicitly MVS.

The order in which options on the LSEARCH or SEARCH option are specified is
the order that is searched.

See “LSEARCH | NOLSEARCH” on page 91 and “SEARCH | NOSEARCH” on
page 126 for more information on these compiler options.

Search sequences for include files
The search path is a list of include paths, each of which may form the start of a
fully qualified file name. The include path can be specified through the -I option.
For the compiler, it can also be specified through the SEARCH and LSEARCH
options.

If the same z/OS UNIX System Services directory is specified in the search path
multiple times, then only the first one is used. For example, /usr/include and
/usr/include/sys/.. resolve to the same z/OS UNIX System Services directory,
therefore only the first path will be used in the final search path.

The status of the OE option affects the search sequence.

With the NOOE option

Search sequences for include files are used when the include file is not in absolute
form. “Determining whether the file name is in absolute form” on page 178
describes the absolute form of include files.

If the include filename is not absolute, the compiler performs the library search as
follows:
v For system include files:

1. The search order as specified on the SEARCH option, if any
2. The libraries specified on the SYSLIB DD statement

v For user include files:
1. The libraries specified on the USERLIB DD statement

182 User's Guide

2. The search order for system include files

Example: This example shows an excerpt from a JCL stream, that compiles a C
program for a user whose user prefix is JONES:
//COMPILE EXEC PROC=MTCC,
// CPARM=’SEARCH(’’’’BB.D’’’’,BB.F),LSEARCH(CC.X)’
//SYSLIB DD DSN=JONES.ABC.A,DISP=SHR
// DD DSN=ABC.B,DISP=SHR
//USERLIB DD DSN=JONES.XYZ.A,DISP=SHR
// DD DSN=XYZ.B,DISP=SHR
//SYSIN DD DSN=JONES.ABC.C(D),DISP=SHR

.

.

.

The search sequence that results from the preceding JCL statements is:

Table 29. Order of search for include files

Order of Search For System Include Files For User Include Files

First BB.D JONES.CC.X

Second JONES.BB.F JONES.XYZ.A

Third JONES.ABC.A XYZ.B

Fourth ABC.B BB.D

Fifth JONES.BB.F

Sixth JONES.ABC.A

Seventh ABC.B

With the OE option

Search sequences for include files are used when the include file is not in absolute
form. “Determining whether the file name is in absolute form” on page 178
describes the absolute form of an include file.

If the include filename is not absolute, the compiler performs the library search as
follows:
v For system include files:

1. The search order as specified on the SEARCH option, if any
2. The libraries specified on the SYSLIB DD statement

v For user include files:
1. If you specified OE with a file name and the including file is a z/OS UNIX

file and a main source file, the directory of the file name specified with the
OE option; otherwise, the directory of the including file

2. The search order as specified by the LSEARCH option, if any
3. The libraries specified on the USERLIB DD statement
4. The search order for system include files

Example: The following shows an example where you are given a file
/r/you/cproc.c that contains the following #include directives:
#include "/u/usr/header1.h"
#include "//aa/bb/header2.x"
#include "common/header3.h"
#include <header4.h>

Chapter 3. Compiling 183

And the following options:
OE(/u/crossi/myincs/cproc)
SEARCH(//V.+, /new/inc1, /new/inc2)
LSEARCH(//(*.x)=(lib(AAA)), /c/c1, /c/c2)

The include files would be searched as follows:

Table 30. Examples of search order for z/OS UNIX

#include Directive Filename Files in Search Order

Example 1. This is an absolute pathname, so no search is performed.

#include "/u/usr/header1.h" 1. /u/usr/header.h

Example 2. This is a data set (starts with //) and is treated as such.

"//aa/bb/header2.x" 1. userid.AAA(HEADER2)

2. DD:USERLIB(HEADER2)

3. userid.V.AA.BB.X(HEADER2)

4. DD:SYSLIB(HEADER2)

Example 3. This is a user include file with a relative path name. The search starts with the
directory of the parent file or the name specified on the OE option if the parent is the main
source file (in this case the parent file is the main source file so the OE suboption is chosen
i.e. /u/crossi/myincs).

"common/header3.h" 1. /u/crossi/myincs/common/header3.h

2. /c/c1/common/header3.h

3. /c/c2/common/header3.h

4. DD:USERLIB(HEADER3)

5. userid.V.COMMON.H(HEADER3)

6. /new/inc1/common/header3.h

7. /new/inc2/common/header3.h

8. DD:SYSLIB(HEADER3)

Example 4. This is a system include file with a relative path name. The search follows the
order of suboptions of the SEARCH option.

<header4.h> 1. userid.V.H(HEADER4)

2. /new/inc1/common/header4.h

3. /new/inc2/common/header4.h

4. DD:SYSLIB(HEADER4)

184 User's Guide

Chapter 4. Using IPA link step with programs

Traditional optimizers only have the ability to optimize within a function
(intra-procedural optimization) or at most within a compilation unit (a single source
file and its included header files). This is because traditional optimizers are only
given one compilation unit at a time.

Interprocedural optimizations are a class of optimizations that operate across function
boundaries. IBM's Interprocedural Analysis (IPA) optimizer is designed to optimize
complete modules at a time. This allows for increased optimization. By seeing
more of the application at once, IPA is able to find more opportunities for
optimization and this can result in much faster code.

In order to get a global module view of the application, IPA uses the following two
pass process:
v The first pass is called an IPA Compile. During this pass, IPA collects all of the

relevant information about the compilation unit and stores it in the object file.
This collected information is referred to as an IPA Object.

v The second pass is called the IPA Link. During this step, IPA acts like a
traditional linker, and all object files, object libraries and side decks are fed to
IPA so that it can optimize the entire module. The IPA link step involves two
separate optimizers. The IPA optimizer is run first and focuses optimizations
across the module. IPA then breaks down the module into logical chunks called
partitions and invokes the traditional optimizer with these partitions.

Whenever a compiler attempts to perform more optimizations, or looks at a larger
portion of an application, more time, and more memory are required. Since IPA
does more optimizations than either OPT(2) or OPT(3) and has a global view of the
module, the compile time and memory used by the IPA Compile or Link process is
more than that used by a traditional OPT(2) or OPT(3) compilation.

Invoking IPA using metalc utility
You can invoke the IPA compile step, the IPA link step, or both. The step that
metalc invokes depends upon the invocation parameters and type of files you
specify.

The following command invokes the IPA compile step for the source file hello.c:
metalc -c -qipa hello.c

The following command invokes the IPA link step and generate the assembly
source file:
metalc -qipa hello.o

Specifying options

The following example shows how to pass the IPA and the SOURCE options to the
IPA compile step, and the MAXMEM(2048) option to both the IPA compile and the
IPA link step.
metalc -O2 -qipa -qsource -qmaxmem=2048 hello.c

© Copyright IBM Corp. 2018 185

Other considerations

The metalc utility automatically generates all INCLUDE and LIBRARY IPA Link
control statements.

IPA under metalc supports the following types of files:
v MVS PDS members
v Sequential data sets
v z/OS UNIX files
v z/OS UNIX archive (.a) files

Compiling under z/OS batch
To compile your C source program under batch, you can either use the cataloged
procedures that IBM supplies, or write your own JCL statements.

Using cataloged procedures for IPA Link

You can use the following IBM-supplied cataloged procedure.

MTCI Run the IPA link step for a program.

Related information

Chapter 8, “Building Enterprise Metal C for z/OS programs,” on page 197

Reference Information
The following topic provides reference information concerning the IPA link step
control file, and object file directives understood by IPA.

IPA link step control file
The IPA link step control file is a fixed-length or variable-length format file that
contains additional IPA processing directives. The CONTROL suboption of the IPA
compiler option identifies this file.

The IPA link step issues an error message if any of the following conditions exist in
the control file:
v The control file directives have invalid syntax.
v There are no entries in the control file.
v Duplicate names exist in the control file.

You can specify the following directives in the control file.

csect=csect_names_prefix
Supplies information that the IPA link step uses to name the CSECTs for
each partition that it creates. The csect_names_prefix parameter is a
comma-separated list of tokens that is used to construct CSECT names.

The behavior of the IPA link steps varies depending upon whether you
specify the CSECT option with a qualifier.
v If you do not specify the CSECT option with a qualifier, the IPA link

step does the following:
– Truncates each name prefix or pads it at the end with @ symbols, if

necessary, to create a 7 character token

186 User's Guide

– Uppercases the token
– Adds a suffix to specify the type of CSECT, as follows:

C code

S static data

T test
v If you specify the CSECT option with a non-null qualifier, the IPA link

step does the following:
– Uppercases the token
– Adds a suffix to specify the type of CSECT, as follows where qualifier

is the qualifier you specified for CSECT and nameprefix is the name
you specified in the IPA link step Control File:

qualifier#nameprefix#C
code

qualifier#nameprefix#S
static data

qualifier#nameprefix#T
test

v If you specify the CSECT option with a null qualifier, the IPA link step
does the following:
– Uppercases the token
– Adds a suffix to specify the type of CSECT, as follows where

nameprefix is the name you specified in the IPA link step Control File:

nameprefix#C
code

nameprefix#S
static data

nameprefix#T
test

The IPA link step issues an error message if you specify the CSECT option
but no control file, or did not specify any csect directives in the control
file. In this situation, IPA generates a CSECT name and an error message
for each partition.

The IPA link step issues a warning or error message (depending upon the
presence of the CSECT option) if you specify CSECT name prefixes, but the
number of entries in the csect_names list is fewer than the number of
partitions that IPA generated. In this situation, for each unnamed partition,
the IPA link step generates a CSECT name prefix with format @CSnnnn,
where nnnn is the partition number. If you specify the CSECT option, the
IPA link step also generates an error message for each unnamed partition.
Otherwise, the IPA link step generates a warning message for each
unnamed partition.

inline=name[,name]
Specifies a list of functions that are desirable for the compiler to inline. The
functions may or may not be inlined.

inline=name[,name] from name[,name]
Specifies a list of functions that are desirable for the compiler to inline, if
the functions are called from a particular function or list of functions. The
functions may or may not be inlined.

Chapter 4. Using IPA link step with programs 187

noinline=name[,name]
Specifies a list of functions that the compiler will not inline.

noinline=name[,name] from name[,name]
Specifies a list of functions that the compiler will not inline, if the functions
are called from a particular function or list of functions.

exits=name[,name]
Specifies names of functions that represent program exits. Program exits
are calls that can never return, and can never call any procedure that was
compiled with the IPA compile step.

lowfreq=name[,name]
Specifies names of functions that are expected to be called infrequently.
These functions are typically error handling or trace functions.

partition=small|medium|large|unsigned-integer
Specifies the size of each program partition that the IPA link step creates.
When partition sizes are large, it usually takes longer to complete the code
generation, but the quality of the generated code is usually better.

For a finer degree of control, you can use an unsigned-integer value to
specify the partition size. The integer is in ACUs (Abstract Code Units),
and its meaning may change between releases. You should only use this
integer for very short term tuning efforts, or when the number of partitions
(and therefore the number of CSECTs in the output object module) must
remain constant.

The size of a CSECT cannot exceed 16 MB with the XOBJ format. Large
CSECTs require the GOFF option.

The default for this directive is medium.

safe=name[,name]
Specifies a list of safe functions that are not compiled as IPA objects. These
are functions that do not call a visible (not missing) function either through
a direct call or a function pointer. Safe functions can modify global
variables, but may not call functions that are not compiled as IPA objects.

isolated=name[,name]
Specifies a list of isolated functions that are not compiled as IPA objects.
Neither isolated functions nor functions within their call chain can refer to
global variables. IPA assumes that functions that are bound from shared
libraries are isolated.

unknown=name[,name]
Specifies a list of unknown functions that are not compiled as IPA objects.
These are functions that are not safe or isolated. This is the default for all
functions defined within non-IPA objects. Any function specified as
unknown can make calls to other parts of the program compiled as IPA
objects and modify global variables and dummy arguments. This option
greatly restricts the amount of interprocedural optimization for calls to
unknown functions.

missing=attribute

Specifies the characteristics of missing functions, which are statically
available but not compiled with the IPA option. IPA has no visibility to the
code within these functions. You must ensure that all user references are
resolved at IPA Link time with user libraries or runtime libraries.

188 User's Guide

The default setting for this directive is unknown. This instructs IPA to make
pessimistic assumptions about the data that may be used and modified
through a call to such a missing function, and about the functions that may
be called indirectly through it.

You can specify the following attributes for this directive:

safe Specifies that the missing functions are safe. See the description for
the safe directive in this topic.

isolated
Specifies that the missing functions are isolated. See the description
for the isolated directive in this topic.

unknown
Specifies that the missing functions are unknown. See the
description for the unknown directive in this topic. This is the
default attribute.

retain=symbol-list
Specifies a list of exported functions or variables that the IPA link step
retains in the final object module. The IPA link step does not prune these
functions or variables during optimization.

Note: In the listed directives, name can be a regular expression. Thus, name can
match multiple symbols in your application through pattern matching. The regular
expression syntax supported by the IPA control file processor is as follows:

Table 31. Syntax rules for specifying regular expressions

Expression Description

string Matches any of the characters specified in string. For example, test will
match testimony, latest, and intestine.

^string Matches the pattern specified by string only if it occurs at the beginning
of a line.

string$ Matches the pattern specified by string only if it occurs at the end of a
line.

str.ing The period (.) matches any single character. For example, t.st will
match test, tast, tZst, and t1st.

string\special_char The backslash (\) can be used to escape special characters. For
example, assume that you want to find lines ending with a period.
Simply specifying the expression .$ would show all lines that had at
least one character of any kind in it. Specifying \.$ escapes the period (
.), and treats it as an ordinary character for matching purposes.

[string] Matches any of the characters specified in string. For example,
t[a-g123]st matches tast and test, but not t-st or tAst.

[^string] Does not match any of the characters specified in string. For example,
t[^a-zA-Z] st matches t1st, t-st, and t,st but not test or tYst.

string* Matches zero or more occurrences of the pattern specified by string. For
example, te*st will match tst, test, and teeeeeest.

string+ Matches one or more occurrences of the pattern specified by string. For
example, t(es)+t matches test, tesest, but not tt.

string? Matches zero or one occurrences of the pattern specified by string. For
example, te?st matches either tst or test.

string{m,n} Matches between m and n occurrence(s) of the pattern specified by
string. For example, a{2} matches aa, and b{1,4} matches b, bb, bbb,
and bbbb.

Chapter 4. Using IPA link step with programs 189

Table 31. Syntax rules for specifying regular expressions (continued)

Expression Description

string1 | string2 Matches the pattern specified by either string1 or string2. For example, s
| o matches both characters s and o.

Object file directives understood by IPA
IPA recognizes and acts on the following binder object control directives:
v INCLUDE
v LIBRARY
v IMPORT

Some other linkage control statements (such as NAME, RENAME and ALIAS) are
accepted and passed through to the linker.

Troubleshooting
It is strongly recommended that you resolve all warnings that occur during the IPA
link step. Resolution of these warnings often removes seemingly unrelated
problems.

The following list provides frequently asked questions (Q) and their respective
answers (A):
v Q - I am running out of memory while using IPA. Are there any options for

reducing its use of memory and increasing the system-defined limits?
A - IPA reacts to the NOMEMORY option, and the code generator will react to
the MAXMEM option. If this does not give you sufficient memory, consider
running IPA from batch where more memory can be accessed. Before switching
to batch, verify with your system programmer that you have access to the
maximum possible memory (both in batch and in z/OS UNIX System Services).
You could also reduce the level of IPA processing via the IPA LEVEL suboption.

v Q - I am receiving a "partition too large" warning. How do I fix it?
A - Use the IPA Control file to specify a different partition size.

v Q - My IPA Compile time is too long. Are there any options?
A - Using a lower IPA compilation level (0 or 1 instead of 2) will reduce the
compile time. A smaller partition size, specified in the control file, may minimize
the amount of time spent in the code generator. Limiting inlining, may improve
your compile time, but it will decrease your performance gain significantly and
should only be done selectively using the IPA control file. Use the IPA control
file to specify little used functions as low frequency so that IPA does not spend
too much time trying to optimize them.

v Q - Can I tune the IPA automatic inlining like I can for the regular inliner?
A - Yes. Use the INLINE option for the IPA link step.

190 User's Guide

Chapter 5. Assembling

The Enterprise Metal C for z/OS compiler produces the output in HLASM source
code format. You need to assemble the HLASM source file to produce the output
file.

Generating an object file from the HLASM source using the z/OS
UNIX System Services as command

The generated object file does not have to be a z/OS UNIX file. The as command
can write the object file directly to an MVS data set. The -o flag can be used to
name the output file, where it can be a UNIX file or an MVS data set. For example:
as mycode.s

A successful assemble will produce mycode.o.

If the C source file was compiled with the LONGNAME compiler option, the
generated HLASM source file will contain symbols that are more than eight
characters in length. In that case, the HLASM GOFF option must be specified. Use
the as utility -m flag to specify HLASM options. For example:
as -mgoff mycodelong.s

A successful assemble will produce mycodelong.o.

Generating an object file from the HLASM source under batch

To assemble the assembly source generated by the Enterprise Metal C for z/OS
under batch, you can either use the cataloged procedures that IBM supplies or
write your own JCL statements.

Using cataloged procedures for assembling
You can use one of the following IBM®-supplied cataloged procedures.

Cataloged procedures Task Description

MTCCA Compile and assemble a program

MTCIA Compile a program with IPA link and assemble

Related information

Chapter 8, “Building Enterprise Metal C for z/OS programs,” on page 197

© Copyright IBM Corp. 2018 191

192 User's Guide

Chapter 6. Binding programs

This information describes how to bind your programs using the program
management binder in the z/OS batch and z/OS UNIX System Services
environments.

Binding under z/OS UNIX
You can use the z/OS UNIX System Services ld command to bind the object files.

Related information

Chapter 8, “Building Enterprise Metal C for z/OS programs,” on page 197

Binding under z/OS batch
You can either use the cataloged procedure CEEWL that resides in CEE.SCEEPROC
or write your own JCL statements.

Related information

Chapter 8, “Building Enterprise Metal C for z/OS programs,” on page 197

© Copyright IBM Corp. 2018 193

194 User's Guide

Chapter 7. Running a C application

You can run an application that contains a main entry point under z/OS batch,
TSO, and z/OS UNIX environment.

Related information

Chapter 8, “Building Enterprise Metal C for z/OS programs,” on page 197

© Copyright IBM Corp. 2018 195

196 User's Guide

Chapter 8. Building Enterprise Metal C for z/OS programs

The following two examples show how to compile, assemble, link, and run an
Enterprise Metal C for z/OS program under z/OS UNIX and z/OS batch
environment.

Under z/OS UNIX

The following example shows how to build a reentrant Enterprise Metal C for
z/OS application for mycode.c.
/* mycode.c */
extern int b = 45;

int main(void) {
int a=10;
__asm (" AR %0,%1 " :"+r"(a) :"r"(b));
return a;

}

1. Compile the program and generate mycode.s:
metalc -qrent mycode.c

2. Assemble mycode.s:
as -mgoff mycode.s 1

3. Link mycode.o:
export _LD_SYSLIB="//’CJT.SCJTOBJ’" 2
ld -o mycode -e main mycode.o

4. Run mycode:
mycode

Notes:

1. The HLASM GOFF option is required to assemble the compiler generated code
for RENT.

2. CJT.SCJTOBJ data set is required for the RENT program to resolve CCNZINIT
and CCNZTERM.

Under z/OS batch

The following JCL example shows how to compile, assemble, link, and run an
Enterprise Metal C for z/OS program under z/OS batch.
//ORDER JCLLIB ORDER=(CJT.SCJTPRC)
//**
//* COMPILE AND ASSEMBLE STEP:
//**
//COMP EXEC MTCCA,
// LNGPRFX=’CJT’,CPARM=’SO’
//SYSLIB DD DSN=CEE.SCEEMAC,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
//SYSIN DD *
int main(void) {
int a=10, b=45 ;
__asm (" AR %0,%1 " :"+r"(a) :"r"(b));
return a;
}
/*
//*

© Copyright IBM Corp. 2018 197

//**
//* LINKEDIT STEP:
//**
//LKED EXEC PGM=HEWL,
// REGION=1024K,PARM=’AMODE=31 ’
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
//SYSLIN DD DSN=*.COMP.ASSEMBLE.SYSLIN,DISP=(OLD,DELETE)
//SYSLMOD DD DSN=&&GSET(GO),DISP=(NEW,PASS),
// SPACE=(TRK,(7,7,1)),UNIT=SYSALLDA
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(32000,(30,30))
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//*
//**
//* GO STEP:
//**
//GO EXEC PGM=*.LKED.SYSLMOD,PARM=’ ’
//SYSPRINT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*

198 User's Guide

Chapter 9. Cataloged procedures

This information describes the cataloged procedures that the Enterprise Metal C for
z/OS compiler provides to call the various Enterprise Metal C for z/OS utilities.
You can use the following cataloged procedures for both 31-bit and 64-bit
programs.

When you specify a data set name without enclosing it in single quotation marks
(’), your user prefix will be added to the beginning of the data set name. If you
enclose the data set name in quotation marks, it is treated as a fully qualified
name.

Cataloged procedures Task Description

CDAASMC Compile Common Debug Architecture
assembler code to generate both DWARF and
ADATA debug information, by default.

MTCC Compile a program

MTCCA Compile and assemble a program

MTCI Compile a program with IPA link

MTCIA Compile a program with IPA link and assemble

Tailoring cataloged procedures
A system programmer must modify the cataloged procedures before they are used.

The following data sets contain the cataloged procedures that are to be modified:
v CJT.SCJTPRC
v CEE.SCEEPROC

The IBM-supplied cataloged procedures provide many parameters to allow each
site to customize them easily. The table below describes the commonly used
parameters. Use only those parameters that apply to the cataloged procedure you
are using. For example, if you are only compiling (MTCC), do not specify any
binder parameters.

Parameter Description

INFILE For compile procedures, the input source file name, PDS name of
source files, or directory name of source files. For IPA Link
procedures (for example, MTCI), the input IPA object.

If you do not specify the input data set name, you must use JCL
statements to override the appropriate SYSIN DD statement in the
cataloged procedure.

OUTFILE Output module name and file characteristics. For compile
procedures, specify the name of the file where the assembly source is
to be stored. For assembly procedures, specify the name of the object
module is to be stored.

If you do not specify an OUTFILE name, a temporary data set will
be generated.

© Copyright IBM Corp. 2018 199

Parameter Description

CPARM Compiler options: If two contradictory options are specified, the last
is accepted and the first ignored.

APARM Assembler options: If two contradictory options are specified, the last
is accepted and the first ignored.

IPARM IPA link step options: If two contradictory options are specified, the
last is accepted and the first ignored.

CRUN Compile step execution runtime parameters for the compiler.

IRUN IPA link step runtime parameters: for the compiler.

Data sets used
The following table gives a cross-reference of the data sets that each job step
requires, and a description of how the data set is used.

Table 32. Cross reference of data set used and job step

DD Statement COMPILE IPALINK ASSEMBLE

STEPLIB1 X X

SYSCPRT X X

SYSIN X X X

SYSLIB X X X

SYSLIN X X X

SYSOUT X X

SYSPRINT X

SYSUTx X X X

IPACNTL X

Note: 1 Optional data sets, if the compiler is in DLPA and the runtime library is in
LPA, DLPA, or ELPA. To save resources (especially in z/OS UNIX System
Services), do not unnecessarily specify data sets on the STEPLIB ddname.

Description of data sets used
The following table lists the data sets that the IBM-supplied cataloged procedures
use. It describes the uses of the data set, and the attributes that it supports. You
require compiler work data sets only if you specified NOMEM at compile time.

Notes:

1. You should check the defaults at your site for SYSOUT=*
2. The compiler does not directly deal with the SYSOUT DD statement. It uses

stderr, which in turn is associated with SYSOUT. However, this is just a
default ddname, which can be changed by specifying the MSGFILE runtime
option. Since the compiler does not directly deal with the DD statement
associated with the stderr, it cannot provide an alternate DD statement for
SYSOUT. Applications that invoke the compiler using one of the documented
assembler macros can affect the DD statement that is associated with the stderr
only by specifying the MSGFILE runtime option in the parameter list, but not
via an alternate DD statement.

200 User's Guide

Table 33. Data set descriptions for cataloged procedures

In Job Step DD Statement Description and Supported
Attributes (You should check the
defaults at your site for SYSOUT=*)

COMPILE SYSIN For a C compilation, the output data
set containing the assembler source.
For an IPA compilation, the output
data set containing the IPA object.

RECFM=VS, V, VB, VBS, F, FB, FBS,
or FS, LRECL≤32760. It can be a PDS.

COMPILE SYSLIB For a C or IPA compilation, the data
set for Enterprise Metal C for z/OS
system header files for a source
program.

SYSLIB must be a PDS or PDSE
(DSORG=PO) and RECFM=VS, V, VB,
VBS, F, FB LRECL≤32760.

RECFM cannot be mixed.

The LRECLs for F or FB RECFM must
match.

For more information on searching
system header files, see “SEARCH |
NOSEARCH” on page 126.

COMPILE SYSLIN Data set for object module.

One of the following:

v RECFM=F or FS

v RECFM=FB or FBS.

It can be a PDS. LRECL=80

COMPILE SYSOUT Data set for displaying compiler error
messages.

LRECL=137, RECFM=VBA, BLKSIZE=882.
(Defaults for SYSOUT=*).

COMPILE STEPLIB Data set for Enterprise Metal C for
z/OS compiler and runtime library
modules.

STEPLIB must be a PDS or PDSE
(DSORG=PO) with RECFM=U,
BLKSIZE=32760, LRECL=0.

COMPILE SYSCPRT Output data set for compiler listing.

LRECL>=137, RECFM=VB,VBA,
BLKSIZE=882 (default for SYSOUT=*)

LRECL=133, RECFM=FB,FBA,
BLKSIZE=133*n(where n is an integer
value)

COMPILE SYSUT1 Obsolete work data set.

LRECL=80 and RECFM=F or FB or FBS.

Chapter 9. Cataloged procedures 201

Table 33. Data set descriptions for cataloged procedures (continued)

In Job Step DD Statement Description and Supported
Attributes (You should check the
defaults at your site for SYSOUT=*)

COMPILE SYSUT5, SYSUT6, SYSUT7, SYSUT8,
SYSUT14, SYSUT16, and SYSUT17

Work data sets.

LRECL=3200, RECFM=FB, and
BLKSIZE=3200*n (where n is an
integer value).

COMPILE SYSUT9 Work data set.

LRECL=137, RECFM=VB, and
BLKSIZE=137*n (where n is an integer
value).

COMPILE SYSUT10 PPONLY output data set.

72≤LRECL≤32760, RECFM=VS, V, VB,
VBS, F, FB, FBS or FS (if not
pre-allocated, V is the default). It can
be a PDS.

COMPILE SYSUTIP Work data set.

LRECL=3200, RECFM=FB, BLKSIZE=3200*n
(where n is an integer value),
DSORG=PO, and DSNTYPE=LIBRARY.

COMPILE SYSEVENT Events output file. Must be allocated
by the user. For a description of this
file, see “EVENTS | NOEVENTS” on
page 55.

COMPILE USERLIB User header files. Must be a PDS or
PDSE.

LRECL≤32760, and RECFM=VS, V, VB,
VBS, F or FB.

For more information on searching
user header files, see “SEARCH |
NOSEARCH” on page 126.

IPALINK SYSIN Data set containing object module for
the IPA link step.

LRECL=80 and RECFM=F or FB.

IPALINK IPACNTL IPA Link control file directives.

RECFM=VS, V, VB, VBS, F, FB, FBS,
or FS, LRECL≤32760.

202 User's Guide

Table 33. Data set descriptions for cataloged procedures (continued)

In Job Step DD Statement Description and Supported
Attributes (You should check the
defaults at your site for SYSOUT=*)

IPALINK SYSLIB IPA link step secondary input.

SYSLIB can be a mix of two types of
libraries:

v Object module libraries. These can
be PDSs (DSORG=PO) or PDSEs, with
attributes RECFM=F or RECFM=FB, and
LRECL=80.

v Load module libraries. These must
be PDSs (DSORG=PO) with attributes
RECFM=U and BLKSIZE≤32760.

SYSLIB member libraries must be
cataloged.

IPALINK SYSLIN The output data set containing the
assembler source.

One of the following:

v RECFM=F or FS

v RECFM=FB or FBS

IPALINK SYSOUT Data set for displaying compiler error
messages.

LRECL=137, RECFM=VBA, BLKSIZE=882.
(Defaults for SYSOUT=*).

IPALINK STEPLIB Data set for Enterprise Metal C for
z/OS compiler/runtime library
modules.

STEPLIB must be a PDS or PDSE
(DSORG=PO) with RECFM=U,
BLKSIZE≤32760.

IPALINK SYSCPRT Output data set for IPA link step
listings.

LRECL=137, RECFM=VBA, BLKSIZE=882
(default for SYSOUT=*).

IPALINK SYSUT5, SYSUT6, SYSUT7, SYSUT8,
SYSUT14, SYSUT16, and SYSUT17

Work data sets.

LRECL=3200, RECFM=FB, and
BLKSIZE=3200*n (where n is an
integer value).

IPALINK SYSUT9 Work data set.

LRECL=137, RECFM=VB, and
BLKSIZE=137*n (where n is an integer
value).

IPALINK SYSUTIP Work data set.

LRECL=3200, RECFM=FB, BLKSIZE=3200*n
(where n is an integer value),
DSORG=PO, and DSNTYPE=LIBRARY.

Chapter 9. Cataloged procedures 203

Table 33. Data set descriptions for cataloged procedures (continued)

In Job Step DD Statement Description and Supported
Attributes (You should check the
defaults at your site for SYSOUT=*)

ASSEMBLE SYSLIN Data set for object module.

One of the following:

v RECFM=F or FS

v RECFM=FB or FBS.

It can be a PDS. LRECL=80

ASSEMBLE SYSLIB The data set identifies the macro
library to be used when assembling
the assembler source code.

ASSEMBLE SYSIN The data set containing the assembly
source.

v LREL=80

v RECFM=F or FB

204 User's Guide

Chapter 10. CDAHLASM — Use the HLASM assembler to
create DWARF debug information

Description

The CDAHLASM utility is the MVS batch equivalent of the as utility. This utility is
shipped as part of the Run-Time Library Extensions and is installed in
CEE.SCEERUN2.

The compiler generates output in the form of assembler source. The compiler
cannot generate DWARF information directly because it cannot create symbolic
debugging information. The symbolic debugging information can be obtained only
during object code generation, in this case, during the assembly stage.

Debuggers can use the DWARF-formatted output from the CDAHLASM utility to
debug Metal C applications. To enable the generation of complete DWARF
information, the compiler embeds the type information, created during the
compilation stage, into the generated assembler source output. The assembly stage
takes the embedded information, and combines it with the symbolic debugging
information obtained during assembling, and produces the final DWARF
information side file.

The CDAHLASM utility also produces debug information in ADATA format,
which is required for the generation of DWARF information. The ADATA
assembler option will be passed to the assembler unless the NODEBUG option is
passed to CDAHLASM.

The compiler might put a debug data block in the generated assembly file. The
CDAHLASM utility gets the MD5 signature from the debug data block, if the block
exists, and puts the signature in the debug side file. In addition, the compiler
generates a placeholder for the debug side file name in the debug data block. If the
CDAHLASM utility has the write permission to the assembly file, it will update
the assembly file by replacing the debug side file name in the debug data block
with the user provided name or a default debug side file name. Otherwise, the
CDAHLASM utility will fail to update the debug side file name in the debug data
block.

For information on the CDAASMC cataloged procedure, which executes the
CDAHLASM utility, see Chapter 9, “Cataloged procedures,” on page 199.

Options directed to the CDAHLASM utility can be specified only through the
DD:CDAHOPT.

Options

PHASEID
Displays the version of CDAHLASM as well as the Common Debug
Architecture runtime phaseid information.

NODEBUG
Suppresses the generation of DWARF debug information.

© Copyright IBM Corp. 2018 205

VERBOSE
Specifies verbose mode, which writes additional informational messages to
DD:SYSOUT.

206 User's Guide

Chapter 11. make utility

This information describes the z/OS UNIX System Services make utility. For
information on the syntax and use, refer to z/OS UNIX System Services Command
Reference.

The z/OS Shell and Utilities provides the make utility that you can use to simplify
the task of creating and managing z/OS UNIX System Services Enterprise Metal C
for z/OS application programs. You can use the make utility with the metalc utility
to build application programs into easily updated and maintained executable files.

Creating makefiles
The make utility maintains all the parts of and dependencies for your application
program. It uses a makefile to keep your application parts (listed in it) up to date
with one another. If one part changes, the make utility updates all the other files
that depend on the changed part.

A makefile is a z/OS UNIX text file. You can use any text editor to create and edit
the file. It describes the application program files, their locations, dependencies on
other files, and rules for building the files into an executable file. When creating a
makefile, remember that tabbing of information in the file is important and not all
editors support tab characters the same way.

The make utility uses make dependencies to determine which targets require
recompile and invokes metalc to do the recompile.

See z/OS UNIX System Services Programming Tools and z/OS UNIX System Services
Command Reference for a detailed discussion of the shell make utility.

You can use the -M flag option instructs the compiler to generate a dependency file
or dependency files that can be used by the make utility.

The -qmakedep compiler option produces the dependency files that are used by the
make utility for each source file.

Related information

For more information on related compiler options, see
v “-M” on page 227
v “MAKEDEP” on page 97

© Copyright IBM Corp. 2018 207

208 User's Guide

Chapter 12. BPXBATCH utility

This information provides a quick reference for the IBM-supplied BPXBATCH
program. BPXBATCH makes it easy for you to run shell scripts and Enterprise
Metal C for z/OS executable files that reside in z/OS UNIX files through the z/OS
batch environment. If you do most of your work from TSO/E, use BPXBATCH to
avoid going into the shell to run your scripts and applications.

In addition to using BPXBATCH, if you want to perform a local spawn without
being concerned about environment set-up (that is, without having to set specific
environment variables, which could be overwritten if they are also set in your
profile) you can use BPXBATSL. BPXBATSL, which provide you with an alternate
entry point into BPXBATCH, and force a program to run using a local spawn
instead of fork or exec as BPXBATCH does. This ultimately allows a program to
run faster.

BPXBATSL is also useful when you want to perform a local spawn of your
program, but also need subsequent child processes to be forked or executed.
Formerly, with BPXBATCH, this could not be done since BPXBATCH and the
requested program shared the same environment variables. BPXBATSL is provided
as an alternative to BPXBATCH. It will force the running of the target program
into the same address space as the job itself is initiated in, so that all resources for
the job can be used by the target program; for example, DD allocations. In all other
respects, it is identical to BPXBATCH.

BPXBATCH usage

The BPXBATCH program allows you to submit z/OS batch jobs that run shell
commands, scripts, or Enterprise Metal C for z/OS executable files in z/OS UNIX
files from a shell session. You can invoke BPXBATCH from a JCL job, from TSO/E
(as a command, through a CALL command, from a REXX EXEC).

JCL: Use one of the following:
v EXEC PGM=BPXBATCH,PARM=’SH program-name’

v EXEC PGM=BPXBATCH,PARM=’PGM program-name’

TSO/E: Use one of the following:
v BPXBATCH SH program-name

v BPXBATCH PGM program-name

BPXBATCH allows you to allocate the z/OS standard files stdin, stdout, and
stderr as z/OS UNIX files for passing input, for shell command processing, and
writing output and error messages. If you do allocate standard files, they must be
z/OS UNIX files. If you do not allocate them, stdin, stdout, and stderr default to
/dev/null. You allocate the standard files by using the options of the data
definition keyword PATH.

Note: The BPXBATCH utility also uses the STDENV file to allow you to pass
environment variables to the program that is being invoked. This can be useful
when not using the shell, such as when using the PGM parameter.

© Copyright IBM Corp. 2018 209

Example: For JCL jobs, specify PATH keyword options on DD statements; for
example:
//jobname JOB ...

//stepname EXEC PGM=BPXBATCH,PARM=’PGM program-name parm1 parm2’

//STDIN DD PATH=’/stdin-file-pathname’,PATHOPTS=(ORDONLY)
//STDOUT DD PATH=’/stdout-file-pathname’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//STDERR DD PATH=’/stderr-file-pathname’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU...

You can also allocate the standard files dynamically through use of SVC 99.

For TSO/E, you specify PATH keyword options on the ALLOCATE command. For
example:
ALLOCATE FILE(STDIN) PATH(’/stdin-file-pathname’) PATHOPTS(ORDONLY)
ALLOCATE FILE(STDOUT) PATH(’/stdout-file-pathname’)

PATHOPTS(OWRONLY,OCREAT,OTRUNC) PATHMODE(SIRWXU)
ALLOCATE FILE(STDERR) PATH(’/stderr-file-pathname’)

PATHOPTS(OWRONLY,OCREAT,OTRUNC) PATHMODE(SIRWXU)

BPXBATCH SH program-name

You must always allocate stdin as read. You must always allocate stdout and
stderr as write.

Parameter

BPXBATCH accepts one parameter string as input. At least one blank character
must separate the parts of the parameter string. When BPXBATCH is run from a
batch job, the total length of the parameter string must not exceed 100 characters.
When BPXBATCH is run from TSO, the parameter string can be up to 500
characters. If neither SH nor PGM is specified as part of the parameter string,
BPXBATCH assumes that it must start the shell to run the shell script allocated by
stdin.

SH | PGM
Specifies whether BPXBATCH is to run a shell script or command or an
Enterprise Metal C for z/OS executable file that is located in a z/OS UNIX
file.

SH Instructs BPXBATCH to start the shell, and to run shell commands
or scripts that are provided from stdin or the specified
program-name.

Note: If you specify SH with no program-name information,
BPXBATCH attempts to run anything read in from stdin.

PGM Instructs BPXBATCH to run the specified program-name as a called
program.

If you specify PGM, you must also specify program-name.
BPXBATCH creates a process for the program to run in and then
calls the program. The HOME and LOGNAME environment
variables are set automatically when the program is run, only if
they do not exist in the file that is referenced by STDENV. You can
use STDENV to set these environment variables, and others.

210 User's Guide

program-name
Specifies the shell command or the z/OS UNIX path name for the shell
script or Enterprise Metal C for z/OS executable file to be run. In addition,
program-name can contain option information.

BPXBATCH interprets the program name as case-sensitive.

Note: When PGM and program-name are specified and the specified
program name does not begin with a slash character (/), BPXBATCH
prefixes your initial working directory information to the program path
name.

Usage notes

You should be aware of the following:
1. BPXBATCH is an alias for the program BPXMBATC, which resides in the

SYS1.LINKLIB data set.
2. BPXBATCH must be invoked from a user address space running with a

program status word (PSW) key of 8.
3. BPXBATCH does not perform any character translation on the supplied

parameter information. You should supply parameter information, including
z/OS UNIX path names, using only the POSIX portable character set.

4. A program that is run by BPXBATCH cannot use allocations for any files other
than stdin, stdout, or stderr.

5. BPXBATCH does not close file descriptors except for 0, 1, and 2. Other file
descriptors that are open and not defined as “marked to be closed” remain
open when you call BPXBATCH. BPXBATCH runs the specified script or
executable file.

6. BPXBATCH uses write-to-operator (WTO) routing code 11 to write error
messages to either the JCL job log or your TSO/E terminal. Your TSO/E user
profile must specify WTPMSG so that BPXBATCH can display messages to the
terminal.

Files

The following list describes the files:
v SYS1.LINKLIB(BPXMBATC) is the BPXBATCH program location.
v The stdin default is /dev/null.
v The stdout default is /dev/null.
v The stdenv default is /dev/null.
v The stderr default is the value of stdout. If all defaults are accepted, stderr is

/dev/null.

Chapter 12. BPXBATCH utility 211

212 User's Guide

Chapter 13. as — Use the HLASM assembler to produce
object files

Format

as
[--option[, option] ...] ...
[-a[egimrsx][=file]] ...
[-g]
[--[no]gadata[=file]]
[--[no]gdwarf4[=file]]
[-moption]
[-I name]
[-o objectfile]
[-d textfile]
[-v]
[--[no]help]
[--[no]verbose]
file

Description

The as command processes assembler source files and invokes the HLASM
assembler to produce object files.

Options

-- Accepts all options that are accepted by HLASM. Multiple options can be
specified by separating them with a comma. This style of option
specification is designed to provide smooth migration for users accustomed
to specifying options in JCL. For example:
--"FLAG(ALIGN),RENT"

-a[egimrsx][=file]
Instructs the assembler to produce a listing.

-ae Instructs the assembler to produce the External Symbol Dictionary
section of the assembler listing. This is equivalent to specifying:
--ESD.

-ag Instructs the assembler to produce the General Purpose Register
Cross Reference section of the assembler listing. This is equivalent
to specifying: --RXREF.

-ai Instructs the assembler to copy all product information to the list
data set. This is equivalent to specifying: --INFO.

-am Instructs the assembler to produce the Macro and Copy Code
Source Summary section of the assembler listing. This is equivalent
to specifying: --MXREF.

-ar Instructs the assembler to produce the Relocation Dictionary (RLD)
section of the assembler listing. This is equivalent to specifying:
--RLD.

-as Instructs the assembler to produce the Ordinary Symbol and

© Copyright IBM Corp. 2018 213

Literal Cross Reference section of the assembler listing. It also
instructs the assembler to produce the un-referenced symbols
defined in the CSECTs section of the assembler listing. This is
equivalent to specifying: --XREF(SHORT,UNREFS).

-ax Instructs the assembler to produce the DSECT Cross Reference
section of the assembler listing. This is equivalent to specifying:
--DXREF.

=file Specifies the file name of the listing output. If you do not specify a
file name, the output goes to stdout.

You may combine these options; for example, use -ams for an assembly
listing with expanded macro and symbol output. The =file option, if
used, must be specified last.

-g Instructs the assembler to collect debug information. By default, the debug
information is produced in DWARF Version 4 format (or --gdwarf4).

--[no]gadata[=file]
Instructs the assembler to collect associated data and write it to the
associated data file. You can optionally specify the name of the output
debug file. The specified name cannot be a PDS or z/OS UNIX file system
directory name. If you do not specify a file name, the default name is
created as follows:
v If you are compiling a data set, the as command uses the source file

name to form the name of the output data set. The high-level qualifier is
replaced with the user ID under which the as command is running, and
.ADATA is appended as the low-level qualifier. For example, if TS12345
is compiling TSMYID.MYSOURCE(src) with this option, the produced debug
file name will be TS12345.MYSOURCE.ADATA(src).

v If you are compiling a z/OS UNIX file, the as command stores the
debug information in a file that has the name of the source file with an
.ad extension. For example, if you are compiling src.a with this option,
the compiler will create a debug file named src.ad.

--[no]gdwarf4[=file]
Instructs the assembler to generate debug information conforming to the
DWARF Version 4 format. Debugging tools (for example, dbx) can take
advantage of this debug information. You can optionally specify the name
of the output debug file. The file name of the output debug file must be a
PDS member, a sequential data set or z/OS UNIX file; it cannot be a PDS
directory or z/OS UNIX System Services file system directory name. If you
do not specify a file name, the default name is created as follows:
v If you are compiling a data set, the as command uses the source file

name to form the name of the output data set. The high-level qualifier is
replaced with the userid under which the as command is running, and
.DBG is appended as the low-level qualifier. For example, if TS12345 is
compiling TSMYID.MYSOURCE(src) with the -g option, the produced
debug file name will be TS12345.MYSOURCE.DBG(src). If TS12345 is
compiling TSMYID.SEQSRC with the -g option, the produced debug file
name will be TS12345.SEQSRC.DBG.

v If you are compiling a z/OS UNIX file, the as command stores the
debug information in a file that has the name of the source file with a
.dbg extension. For example, if you are compiling src.a with the -g
option, the produced debug file name will be src.dbg.

214 User's Guide

-moption
HLASM keyword options are specified using the following syntax:
-m<option>[=<parm>[=<value>][:<parm>[=<value>]]...]

where <option> is an option name, <parm> is a suboption name, and
<value> is the suboption value.

Keyword options with no parameters represent switches that may be either
on or off. The keyword by itself turns the switch on, and the keyword
preceded by the letters NO turns the switch off. For example, -mLIST tells
the HLASM assembler to produce a listing and -mNOLIST tells the HLASM
assembler not to produce a listing. If an option that represents a switch is
set more than once, the HLASM assembler uses the last setting.

Keyword option and parameter names may appear in mixed case letters in
the invocation command.

-I name
Instructs HLASM to look for assembler macro invocation in the specified
location. The name can be either a PDS name or z/OS UNIX file system
directory name. If a PDS data set is specified, it must be fully qualified.
The specified locations are then prepended to a default set of macro
libraries. The as command assumes a default set of macro libraries that is
compatible with the defaults for the compiler. The default data sets used
are: -I CEE.SCEEMAC, -I SYS1.MACLIB, and -I SYS1.MODGEN. The
default data sets can be changed via the environment variable
_AS_MACLIB, for example:
export _AS_MACLIB="FIRST.PDS:SECOND.PDS"

-o objectfile
Specifies the name of the object file. If the name specified is a PDS or z/OS
UNIX System Services directory name, a default file name is created in the
PDS or z/OS UNIX directory specified as follows:
v If the source file is a sequential data set, the second last part of the data

set name will be used. If the data set name only contains one part after
the high-level qualifier, then the last part will be used.

v If the source file is a PDS member, the member name will be used.
v If the source file is a z/OS UNIX file, the suffix will be removed if

applicable.
v If the object file is going into a PDS, the first eight characters of the

name will be used. If there is a dot, anything after the first dot will be
removed.

v If the object file is going into a z/OS UNIX directory, .o will be
appended to the name.

For example:
Source file: //’abc.hello.source’
Ouput file in PDS: HELLO
Output file in UNIX directory: hello.o

Source file: //’ABC.HELLO’
Ouput file in PDS: HELLO
Output file in UNIX directory: HELLO.o

Source file: //SOURCE(hello)
Ouput file in PDS: HELLO
Output file in UNIX directory: hello.o

Chapter 13. as — Use the HLASM assembler to produce object files 215

Source file: /abc/hello.s
Ouput file in PDS: HELLO
Output file in UNIX directory: hello.o

Source file: /abc/hellothere.s
Ouput file in PDS: HELLOTHE
Output file in UNIX directory: hellothere.o

-d textfile
Specifies the name of the object file output in text mode. If the name
specified is a PDS or z/OS UNIX System Services directory name, a default
file name is created in the PDS or z/OS UNIX directory with the same rule
as -o.

-v Writes the version of the as command to stderr.

--[no]help
Help menu. Displays the syntax of the as command.

--[no]verbose
Specifies verbose mode, which writes additional information messages to
stderr.

file may be:
v An MVS data set (for example, //somename)
v An absolute z/OS UNIX file (for example, /somename)
v A relative z/OS UNIX file (for example, ./somename or somename)

The output of the as command is an object file. If you do not specify a file name
via the -o option, the default name is created as follows:
v If you are compiling a data set, the as command uses the source file name to

form the name of the output data set. The high-level qualifier is replaced with
the user ID under which the as command is running, and .OBJ is appended as
the low-level qualifier. For example, if TS12345 is compiling
TSMYID.MYSOURCE(src), the compiler will create an object file named
TS12345.MYSOURCE.OBJ(src).

v If you are compiling a z/OS UNIX file, the as command names the object file
with the name of the source file with an .o extension. For example, if you are
compiling src.a, the object file name will be src.o.

Notes:

v The as command does not accept standard input as a file.
v The as command invokes the HLASM assembler to produce the object file. The

HLASM assembler is invoked with the default options ASA and TERM. The
ASA option instructs HLASM to use American National Standard printer control
characters in records written to the listing file, thus making the listing file more
readable in the z/OS UNIX System Services environment. The TERM option
instructs HLASM to write error messages to stderr. These defaults can be
changed by using the -m option or -- option.

v HLASM messages and as error messages are directed to stderr. Verbose option
output is directed to stdout.

v When invoking as from the shell, any option arguments or operands specified
that contain characters with special meaning to the shell must be escaped. For
example, source files specified as PDS member names contain parentheses; if
they are specified as fully qualified names, they contain single quotation marks.
To escape these special characters, either enclose the option argument or
operand in double quotation marks, or precede each character with a backslash.

216 User's Guide

v The compiler might put a debug data block in the generated assembly file. The
as utility gets the MD5 signature from the debug data block, if the block exists,
and puts the signature in the debug side file. In addition, the compiler generates
a placeholder for the debug side file name in the debug data block. If the as
utility has the write permission to the assembly file, it will update the assembly
file by replacing the debug side file name in the debug data block with the user
provided name or a default debug side file name. Otherwise, the as utility will
fail to update the debug side file name in the debug data block.

Chapter 13. as — Use the HLASM assembler to produce object files 217

218 User's Guide

Chapter 14. metalc — Compiler invocation using a
customizable configuration file

Format

metalc

Description

The metalc utility uses an external configuration file to control the invocation of
the compiler and compiles C source files.

accept the following input files with their default z/OS UNIX file system and host
suffixes:

z/OS UNIX files:
v filename with .c suffix (C source file)
v filename with .i suffix (preprocessed C source file)
v filename with .o suffix (object file for binder/IPA Link)
v filename with .s suffix (assembler source file)
v filename with .a suffix (archive library)
v filename with .x suffix (definition side-file or side deck)

Host files:
v filename with .C suffix (C source host file)
v filename with .CEX suffix (preprocessed C source host file)
v filename with .OBJ suffix (object host file for the binder/IPA Link)
v filename with .ASM suffix (assembler source host file)
v filename with .LIB suffix (host archive library)
v filename with .EXP suffix (host definition side-file or side deck)

Note: For host files, the host data set name must by preceded by a double slash
(//). The last qualifier of the data set name is .C instead of a file name with a .C
suffix.

Setting up the compilation environment
Before you compile your C programs, you must set up the environment variables
and the configuration file for your application. For more information on the
configuration file, see “Setting up a configuration file” on page 221.

Environment variables
You can use environment variables to specify necessary system information.

Setting environment variables

Different commands are used to set the environment variables depending on
whether you are using the z/OS UNIX System Services shell (sh), which is based
on the Korn Shell and is upward-compatible with the Bourne shell, or tcsh shell,

© Copyright IBM Corp. 2018 219

which is upward-compatible with the C shell. To determine the current shell, use
the echo command, which is echo $SHELL.

The z/OS UNIX System Services shell path is /bin/sh. The tcsh shell path is
/bin/tcsh.

For more information about the NLSPATH and LANG environment variables, see
z/OS UNIX System Services Command Reference.

Setting environment variables in z/OS shell

The following statements show how you can set environment variables in the
z/OS shell:
LANG=En_US
NLSPATH=/usr/lpp/IBM/cjt/v3r1/metalc/msg/%L/%N:/usr/lpp/IBM/cjt/v3r1/metalc/msg/%L/%N.cat
PATH=/bin:/usr/lpp/IBM/cjt/v3r1/metalc/bin${PATH:+:${PATH}}
export LANG NLSPATH PATH

To set the variables so that all users have access to them, add the commands to the
file /etc/profile. To set them for a specific user only, add the commands to the
.profile file in the user's home directory. The environment variables are set each
time the user logs in.

Setting environment variables in tcsh shell

The following statements show how you can set environment variables in the tcsh
shell:
setenv LANG En_US
setenv NLSPATH /usr/lpp/IBM/cjt/v3r1/metalc/msg/%L/%N:/usr/lpp/IBM/cjt/v3r1/metalc/msg/%L/%N.cat
setenv PATH /bin:/usr/lpp/IBM/cjt/v3r1/metalc/bin${PATH:+:${PATH}}

To set the variables so that all users have access to them, add the commands to the
file /etc/csh.cshrc. To set them for a specific user only, add the commands to the
.tcshrc file in the user's home directory. The environment variables are set each
time the user logs in.

Setting environment variables for the message file

Before using the compiler, you must install the message catalogs and set the
environment variables:

LANG
Specifies the national language for message and help files.

NLSPATH
Specifies the path name of the message and help files.

XL_CONFIG
Specifies the name of an alternative configuration file (.cfg) for the metalc
utility. For the syntax of the configuration file, see the description for the -F
flag option in “Flag options syntax” on page 226.

The LANG environment variable can be set to any of the locales provided on the
system.

The national language code for United States English may be En_US or C.

220 User's Guide

To determine the current setting of the national language on your system, see the
output from both of the following echo commands:
v echo $LANG

v echo $NLSPATH

The LANG and NLSPATH environment variables are initialized when the
operating system is installed, and may differ from the ones you want to use.

Note: You can change the default NLSPATH and PATH when you install the
compiler.

Setting up a configuration file
The configuration file specifies information that the compiler uses when you
invoke it. This file defines values used by the compiler to compile C programs.
You can make entries to this file to support specific compilation requirements or to
support C compilation environments.

A configuration file is a UNIX file consisting of named sections called stanzas.
Each stanza contains keywords called configuration file attributes, which are
assigned values. The attributes are separated from their assigned value by an equal
sign. A stanza can point to a default stanza by specifying the "use" keyword. This
allows specifying common attributes in a default stanza and only the deltas in a
specific stanza, referred to as the local stanza.

For any of the supported attributes not found in the configuration file, the metalc
utility uses the built-in defaults. It uses the first occurrence in the configuration file
of a stanza or attribute it is looking for. Unsupported attributes, and duplicate
stanzas and attributes are not diagnosed.

Notes:

1. The difference between specifying values in the stanza and relying on the
defaults provided by the metalc utility is that the defaults provided by the
metalc utility will not override pragmas.

2. Any entry in the configuration file must occur on a single line. You cannot
continue an entry over multiple lines.

Configuration file attributes
A stanza in the configuration file can contain the following attributes:

acceptable_rc
Enables you to specify a number that represents a return code value for a
program invoked by the metalc utility. The metalc utility does not place
any restriction on the value assigned to the acceptable_rc attribute.
acceptable_rc can appear as part of any stanza in the configuration file.

Note: If the acceptable_rc attribute is not specified in the configuration
file, the metalc utility will use the value from the _C89_ACCEPTABLE_RC
environment variable if it is exported, or value 4 otherwise.

as Path name to be used for the assembler. The default is /bin/c89.

Note: It is recommend to use the as utility instead of the metalc utility to
compile assembler source code.

Chapter 14. metalc — Compiler invocation using a customizable configuration file 221

asmlib
Specifies assembler macro libraries to be used when assembling the
assembler source code.

asopt The list of options for the assembler and not for the compiler. These
override all normal processing by the compiler and are directed to the
assembler specified in the as attribute.

asuffix
The suffix for archive files. The default is a.

asuffix_host
The suffix for archive data sets. The default is LIB.

ccomp The Enterprise Metal C for z/OS compiler. The default is
/usr/lpp/IBM/cjt/v3r1/metalc/exe/cjtdrvr.

cinc A comma separated list of directories or data set wild cards used to search
for C header files. For further information on the list of search places used
by the compiler to search for system header files, see the note at the end of
this list of configuration file attributes.

classversion
The USL class library version.

csuffix
The suffix for source programs. The default is c (lowercase c).

csuffix_host
The suffix for C source data sets. The default is C (uppercase C).

cversion
The compiler version.

exportlist_c
A colon separated list of data sets with member names indicating
definition side-decks to be used to resolve symbols during the link-editing
phase of non-XPLINK C applications. The default for this attribute is
NONE.

exportlist_c_64
A colon separated list of data sets with member names indicating
definition side-decks to be used to resolve symbols during the link-editing
phase of 64-bit C applications.

isuffix The suffix for C preprocessed files. The default is i.

isuffix_host
The suffix for C preprocessed data sets. The default is CEX.

ilsuffix
The suffix for IPA output files. The default is I.

ilsuffix_host
The suffix for IPA output data sets. The default is IPA.

ld The path name to be used for the binder. The default is /bin/c89.

ld_c The path name to be used for the binder when only C sources appear on
the command line invoked with a C stanza. The default is /bin/c89.

libraries
libraries specifies the default libraries that the binder is to use at bind
time. The libraries are specified using the -llibname syntax, with multiple
library specifications separated by commas. The default is empty.

222 User's Guide

libraries2
libraries2 specifies additional libraries that the binder is to use at bind
time. The libraries are specified using the -llibname syntax, with multiple
library specifications separated by commas. The default is empty.

options
A string of option flags, separated by commas, to be processed by the
compiler as if they had been entered on the command line.

osuffix
The suffix for object files. The default is .o.

osuffix_host
The suffix for object data sets. The default is OBJ.

pversion
The runtime library version.

ssuffix
The suffix for assembler files. The default is .s.

ssuffix_host
The suffix for assembler data sets. The default is ASM.

steplib
A colon separated list of data sets or keyword NONE used to set the
STEPLIB environment variable. The default is NONE, which causes the
metalc utility to load the Enterprise Metal C for z/OS compiler from LPA
or linklist.

syslib A colon separated list of data sets used to resolve runtime library
references. Data sets from this list are used to construct the SYSLIB DD for
the IPA Link and the binder invocation for non-XPLINK applications.

use Values for attributes are taken from the named stanza and from the local
stanza. For single-valued attributes, values in the use stanza apply if no
value is provided in the local, or default stanza. For comma-separated lists,
the values from the use stanza are added to the values from the local
stanza.

usuffix
The suffix for make dependency file names. The default make dependency
file name suffix is .u, but it is overwritten by the value assigned to this
attribute.

There is no host version of this attribute, because make dependency feature
only applies to z/OS UNIX files.

xsuffix
The suffix for definition side-deck files. The default is x.

xsuffix_host
The suffix for definition side-deck data sets. The default is EXP.

Note: When using the metalc utility to invoke the compiler, the compiler uses the
following list of search places to search for system header files:
v If the -qnosearch option is not specified on the command line or in the

configuration file:
1. Search places defined in the customizable defaults module (CJTEDFLT)
2. Followed by those specified on the command line using the -I flag option
3. Followed by those specified in the configuration file

Chapter 14. metalc — Compiler invocation using a customizable configuration file 223

v If -qnosearch is specified in the configuration file, it turns off all search places
specified on the command line or in the default module and the only search
places are those specified in the configuration file following the last -qnosearch
option.

v If the -qnosearch option is specified on the command line:
1. search places specified on the command line following the last specified

-qnosearch option
2. followed by those specified in the configuration file

Tailoring a configuration file
The default configuration file is installed in /usr/lpp/IBM/cjt/v3r1/metalc/etc/
metalc.cfg.

You can copy this file and make changes to the copy to support specific
compilation requirements or to support other C compilation environments. The -F
option is used to specify a configuration file other than the default. For example, to
make -qnoro the default for the metalc compiler invocation command, add -qnoro
to the metalc stanza in your copied version of the configuration file.

You can link the compiler invocation command to several different names. The
name you specify when you invoke the compiler determines which stanza of the
configuration file the compiler uses. You can add other stanzas to your copy of the
configuration file to customize your own compilation environment.

Only one stanza, in addition to the one referenced by the use attribute, is
processed for any one invocation of the metalc utility. By default, the stanza that
matches the command name used to invoke the metalc utility is used, but it can be
overridden using the -F flag option as described in the example below.

Example: You can use the -F option with the compiler invocation command to
make links to select additional stanzas or to specify a stanza or another
configuration file:
metalc myfile.c -Fmyconfig:SPECIAL

would compile myfile.c using the SPECIAL stanza in a myconfig configuration file
that you had created.

Default configuration file
The default configuration file, (/usr/lpp/IBM/cjt/v3r1/metalc/etc/metalc.cfg),
specifies information that the compiler uses when you invoke it. This file defines
values used by the compiler to compile C programs. You can make entries to this
file to support specific compilation requirements or to support other C compilation
environments. Options specified in the configuration file override the default
settings of the option. Similarly, options specified in the configuration file are in
turn overridden by options set in the source file and on the command line.
Options that do not follow this scheme are listed in “Specifying compiler options”
on page 229.

Invoking the compiler
The Enterprise Metal C for z/OS compiler is invoked using the following syntax:

224 User's Guide

►► metalc ▼

command_line_options input_files
►◄

The parameters of the compiler invocation command can be names of input files
and compiler options. Compiler options perform a wide variety of functions such
as setting compiler characteristics, describing object code and compiler output to
be produced, and performing some preprocessor functions.

To compile, you can use the metalc invocation command to produces as output, a
HLASM source file file_name.s for each file_name.c input source file, unless the
-o option was used to specify a different output file name.

Note: Any assembler file that is produced from an earlier compilation with the
same name as expected output file name in this compilation is deleted as part of
the compilation process, even if new output file is not produced.

Supported options
In addition to -W syntax for specifying keyword options, the metalc utility supports
-q options syntax and several flag options.

–q options syntax
The following principles apply to the use of z/OS option names with -q syntax:
v Any valid abbreviation of an option in z/OS native syntax can be specified

using the -q syntax. For example, LANGLVL can be specified as -qlang, -qlangl,
-qlanglv, and -qlanglvl.

v Some options that are valid using z/OS native syntax cannot be specified using
the -q syntax. For example, ILP32 or LP64 can only be specified as -q32 or -q64
using the -q syntax. Similarly, options DEFINE and UNDEFINE can be specified
using -D and -U flag options.

Suboptions with negative forms of -q options are not supported, unless they cause
an active compiler action, as in the case of -qnokeyword=<keyword>.

For a brief description of the compiler options that can be specified with metalc,
type metalc.

The following syntax diagram shows how to specify keyword options using -q
syntax:

►►

▼

-q option_keyword
:

= suboption

►◄

In the diagram, option_keyword is an option name and the optional suboption is a
value associated with the option. Keyword options with no suboptions represent
switches that may be either on or off. The option_keyword by itself turns the switch
on, and the option_keyword preceded by the letters NO turns the switch off. For
example, -qlist tells the compiler to produce a listing and -qnolist tells the

Chapter 14. metalc — Compiler invocation using a customizable configuration file 225

compiler not to produce a listing. If an option that represents a switch is set more
than once, the compiler uses the last setting.

Some keyword options only have values. Keywords which have values are
specified as keyword=value pairs. In -qfloat=ieee, for instance, ieee is a value.

Some keyword options have suboptions, which in turn have values. Suboptions
which have values are specified as suboption=value pairs. In -qipa=level=2, for
instance, level is a suboption and 2 is a value.

Keyword options and suboptions may appear in mixed case letters in the
command that invokes the metalc utility. Keyword options that have suboptions
can also be preceded by the letters NO in which case they are similar to off
switches and do not allow suboptions. This is a noticeable departure from the
z/OS options, which allow suboptions even if they are preceded by the letters NO.
However, the function that the z/OS behavior provides can easily be emulated by
specifying all required suboptions with an option_keyword followed by the same
option_keyword that is preceded by the letters NO. The subsequent specification of
the same option_keyword unlocks all previously specified suboptions.

Example: NODEBUG(FORMAT(DWARF)) is equivalent to -qdebug=format=dwarf
-qnodebug

Related information

For detailed descriptions of the compiler options that can be specified with metalc,
refer to Chapter 2, “Compiler options,” on page 7.

Flag options syntax
The metalc utility also supports several additional flag options, which are
described below:

-# Displays processing options but does not invoke the compiler; the output
is produced in stderr.

►► -# ►◄

-F Names an alternative configuration file (.cfg) for the metalc utility.

Suboptions are:
v config_file (specifies the name of an metalc configuration file.)
v stanza (directs the compiler to use the entries under the specified stanza

name in the config_file to set up the compiler environment.)

►► -F config_file
: stanza

: stanza

►◄

Note: The default configuration file supplied at installation time is called
/usr/lpp/IBM/cjt/v3r1/metalc/etc/metalc.cfg. Any file names or stanzas
that you specify on the command line override the defaults specified in the
/usr/lpp/IBM/cjt/v3r1/metalc/etc/metalc.cfg configuration file.

Example: To compile myprogram.c using a configuration file called
/usr/tmp/mycbc.cfg, enter:

226 User's Guide

metalc myprogram.c -F/usr/tmp/mycbc.cfg

-M Instructs the compiler to generate a dependency file or dependency files
that can be used by the make utility. Dependency file name can be
overridden by the -MF option.

The compiler will generate as many dependency files as there are source
files specified.

-M is the equivalent of specifying -qmakedep with no suboption.

►► -M ►◄

Example: To compile myprogram.c and create an output file named
myprogram.u, enter:
metalc -c -M myprogram.c

-MF If -M or -qmakedep is specified, this option can be used to override the
default name of the dependency file.

►► -MF file_name ►◄

In the syntax, file_name can be either a file name or a directory. By default,
the dependency file name and path is the same as the -o compiler option
but with .u suffix. The default suffix can be modified through usuffix
configuration file attribute. If a directory is specified, the default
dependency file name is used and placed in this directory. If a relative file
name is specified, it is relative to the current working directory.

Notes:

1. The argument of file_name can not be the name of a data set.
2. If the file specified by -MF already exists, it will be overwritten.

Moreover, if the output path specified does not exist or is
write-protected, an error message will be issued.

3. If you specify a single file name for the -MF option when compiling
multiple source files, each generated dependency file overwrites the
previous one. Only a single output file will be generated for the last
source file specified on the command line.

-MG If -M or -qmakedep is specified, this option instructs the compiler to include
missing header files into the make dependencies file.

►► -MG ►◄

When used with -qmakedep=pponly, -MG instructs the compiler to include
missing header files into the make dependencies file and suppress
diagnostic messages about missing header files.

When used with -M, -qmakedep, or -qmakedep=gcc, -MG instructs the C
compiler to include missing header files into the make dependency output
file, but the C compiler emits only warning messages and proceeds to
create an object file if the missing headers do not cause subsequent severe
compile errors.

-MT If -M or -qmakedep is specified, this option sets the target to the
<target_name> instead of the default target name. This is useful in cases

Chapter 14. metalc — Compiler invocation using a customizable configuration file 227

where the target is not in the same directory as the source or when the
same dependency rule applies to more than one target.

►► -MT target_name ►◄

When -MT is used with -M or -qmakedep with no suboption, all targets are
repeated for each dependency.

When -MT is used with -qmakedep=gcc or -qmakedep=pponly, all targets
appear on a single line containing all dependencies.

If the -MT option is specified multiple times, the targets from each
specification are included in the dependency file.

-MQ -MQ is the same as -MT except that -MQ escapes any characters that have
special meaning in make.

►► -MQ target_name ►◄

The -MQ option is useful in cases where the target contains characters that
have special meaning in make.

If the -MQ option is specified multiple times, the targets from each
specification are included in the dependency file.

If -MT and -MQ are mixed on the command line, the targets from all -MQ
flags will precede the targets from all -MT flags when they are emitted in
the make dependency file.

-O Optimizes generated code.

►► -O ►◄

-O2 Same as -O.

►► -O2 ►◄

-O3 Performs memory and compile-time intensive optimizations in addition to
those executed with -O2. The -O3 specific optimizations have the potential
to alter the semantics of a user's program. The compiler guards against
these optimizations at -O2 and the option -qstrict is provided at -O3 to
turn off these aggressive optimizations.

►► -O3 ►◄

-O4 Equivalent to -O3 -qipa and -qhot.

►► -O4 ►◄

-O5 Equivalent to -O3 -qipa=level=2 and -qhot.

►► -O5 ►◄

-P Produces preprocessed output in a file that has a suffix that is defined by

228 User's Guide

isuffix, isuffix_host, ixxsuffix, and ixxsuffix_host. The default for
host files is .CEX and for z/OS UNIX files is .i.

As with the -E option, the -C option can be combined with the -P option to
preserve the comments.

-S

Accepted and ignored to allow interoperability with z/OS XL C compiler.

-W Passes the listed options to a designated compiler program where
programs are:
v a (assembler)
v c (Enterprise Metal C for z/OS compiler)
v I (Interprocedural Analysis tool - compile phase)

Note: When used in the configuration file, the -W option requires the
escape sequence back slash comma (\,) to represent a comma in the
parameter string.

►► ▼ ▼-W a , directory
c
I

►◄

Specifying compiler options
Compiler options perform a wide variety of functions, such as setting compiler
characteristics, describing the object code and compiler output to be produced, and
performing some preprocessor functions. You can specify compiler options in one
or more of the following ways:
v On the command line
v In your source program
v In a configuration file

The compiler uses default settings for the compiler options not explicitly set by
you in these listed ways. The defaults can be compiler defaults, installation
defaults, or the defaults set by the metalc utility. The compiler defaults are
overridden by installation defaults, which are overridden by the defaults set by the
metalc utility.

When specifying compiler options, it is possible for option conflicts and
incompatibilities to occur. Enterprise Metal C for z/OS resolves most of these
conflicts and incompatibilities in a consistent fashion, as follows:
Source overrides Command overrides Configuration overrides Default
file -----------> line ----------> file -----------> settings

Options that do not follow this scheme are summarized in the following table:

Table 34. Compiler option conflict resolution

Option Conflicting Options Resolution

-E -o -E

-# -v -#

Chapter 14. metalc — Compiler invocation using a customizable configuration file 229

In general, if more than one variation of the same option is specified, the compiler
uses the setting of the last one specified. Compiler options specified on the
command line must appear in the order you want the compiler to process them.

If a command-line flag is valid for more than one compiler program (for example
-W or -I applied to the compiler and assembler program names), you must specify
it in options, or asopt in the configuration file. The command-line flags must
appear in the order that they are to be directed to the appropriate compiler
program.

Three exceptions to the rules of conflicting options are the -Idirectory or
-I//dataset_name, -llibrary, and -Ldirectory options, which have cumulative effects
when they are specified more than once.

Specifying compiler options on the command line
There are two kinds of command-line options:
v -qoption_keyword (compiler-specific)
v Flag options (available to Enterprise Metal C for z/OS compiler in z/OS UNIX

System Service environment)

Command-line options in the -q option_keyword format are similar to on and off
switches. For most -q options, if a given option is specified more than once, the
last appearance of that option on the command line is the one recognized by the
compiler. For example, -qsource turns on the source option to produce a compiler
listing, and -qnosource turns off the source option so that no source listing is
produced.

Example: The following example would produce a source listing for both
MyNewProg.c and MyFirstProg.c because the last source option specified (-qsource)
takes precedence:
metalc -qnosource MyFirstProg.c -qsource MyNewProg.c

You can have multiple -q option_keyword instances in the same command line, but
they must be separated by blanks. Option keywords can appear in mixed case, but
you must specify the -q in lowercase.

Example: You can specify any -q option_keyword before or after the file name:
metalc -qLIST -qnomaf file.c
metalc file.c -qsource

Some options have suboptions. You specify these with an equal sign following the
-qoption. If the option permits more than one suboption, a colon (:) must separate
each suboption from the next.

Example: The following example compiles the C source file file.c using the
option -qipa to specify the inter procedural analysis options. The suboption
level=2 tells the compiler to use the full inter procedural data flow and alias
analysis, map tells the compiler to produce a report.
metalc -qipa=level=2:map file.c

Specifying flag options
The Enterprise Metal C for z/OS compiler uses a number of common conventional
flag options. Lowercase flags are different from their corresponding uppercase
flags. For example, -c and -C are two different compiler options:

230 User's Guide

v -c specifies that the compiler should only preprocess and compile, but not
produce assembler source..

v -C can be used with -E or -P to specify that user comments should be preserved

Some flag options have arguments that form part of the flag. Here is an example:
metalc stem.c -F/home/tools/test3/new.cfg:myc -qflag=w

where new.cfg is a custom configuration file.

You can specify flags that do not take arguments in one string; for instance,
metalc -Ocv file.c

has the same effect as:
metalc -O -v -c test.c

Specifying compiler options in a configuration file
The default configuration file, (/usr/lpp/IBM/cjt/v3r1/metalc/etc/metalc.cfg),
specifies information that the compiler uses when you invoke it. This file defines
values used by the compiler to compile C programs. You can make entries to this
file to support specific compilation requirements or to support other C compilation
environments.

Options specified in the configuration file override the default settings of the
option. Similarly, options specified in the configuration file are in turn overridden
by options set in the source file and on the command line.

Specifying compiler options in your program source files
You can specify compiler options within your program source by using #pragma
directives. Options specified with pragma directives in program source files
override all other option settings for most options.

Specifying compiler options for architecture-specific 32-bit or
64-bit compilation
You can use Enterprise Metal C for z/OS compiler options to optimize compiler
output for use on specific processor architectures. You can also instruct the
compiler to compile in either 32-bit or 64-bit mode.

The compiler evaluates compiler options in the following order, with the last
allowable one found determining the compiler mode:
1. Compiler default (32-bit mode)
2. Configuration file settings
3. Command line compiler options (-q32, -q64, -qarch, -qtune)
4. Source file statements (#pragma options(ARCH(suboption),TUNE(suboption)))

The compilation mode actually used by the compiler depends on a combination of
the settings of the -q32, -q64, -qarch, and -qtune compiler options, subject to the
following conditions:
v Compiler mode is set according to the last-found instance of the -q32, or -q64

compiler options. If neither of these compiler options is chosen, the compiler
mode is set to 32-bit.

v Architecture target is set according to the last-found instance of the -qarch
compiler option, provided that the specified -qarch setting is compatible with
the compiler mode setting. If the -qarch option is not set, the compiler assumes
a -qarch setting of 5.

Chapter 14. metalc — Compiler invocation using a customizable configuration file 231

v Tuning of the architecture target is set according to the last-found instance of the
-qtune compiler option, provided that the -qtune setting is compatible with the
architecture target and compiler mode settings. If the -qtune option is not set,
the compiler assumes a default -qtune setting according to the -qarch setting in
use.

Possible option conflicts and compiler resolution of these conflicts are described
below:
v -q32 or -q64 setting is incompatible with user-selected -qarch option.

Resolution: -q32 or -q64 setting overrides -qarch option; compiler issues a
warning message, sets -qarch to 10, and sets the -qtune option to the -qarch
setting's default -qtune value.

v -q32 or -q64 setting is incompatible with user-selected -qtune option.
Resolution: -q32 or -q64 setting overrides -qtune option; compiler issues a
warning message, and sets -qtune to the -qarch settings's default -qtune value.

v -qarch option is incompatible with user-selected -qtune option.
Resolution: Compiler issues a warning message, and sets -qtune to the -qarch
setting's default -qtune value.

v Selected -qarch and -qtune options are not known to the compiler.
Resolution: Compiler issues a warning message, sets -qarch to 10, and sets
-qtune to the -qarch setting's default -qtune setting. The compiler mode (32 or
64-bit) is determined by the -q32 or -q64 compiler settings.

232 User's Guide

Appendix. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the Contact z/OS web page (www.ibm.com/systems/z/os/
zos/webqs.html) or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out

© Copyright IBM Corp. 2018 233

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html

punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the

234 User's Guide

default option for the FILE keyword. In the example, if you include the FILE
keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix. Accessibility 235

236 User's Guide

Glossary

This glossary defines technical terms and abbreviations that are used in Enterprise
Metal C for z/OS documentation. If you do not find the term you are looking for,
refer to the index of the appropriate Enterprise Metal C for z/OS manual or view
the IBM Glossary of Computing Terms (www.ibm.com/software/globalization/
terminology).

The following cross-references are used in this glossary:
v See refers you from a term to a preferred synonym, or from an acronym or

abbreviation to the defined full form.
v See also refers you to a related or contrasting term.

To view glossaries for other IBM products, go to IBM Glossary of Computing
Terms (www.ibm.com/software/globalization/terminology).

A
abstract data type

A mathematical model that includes a structure for storing data and
operations that can be performed on that data. Common abstract data
types include sets, trees, and heaps.

access mode

1. The manner in which files are referred to by a computer. See also
dynamic access, sequential access.

2. A form of access permitted for a file.

access specifier
A specifier that defines whether a class member is accessible in an
expression or declaration. The three access specifiers are public, private,
and protected.

addressing mode (AMODE)
The attribute of a program module that identifies the addressing range in
which the program entry point can receive control.

address space
The range of addresses available to a computer program or process.
Address space can refer to physical storage, virtual storage, or both.

aggregate

1. A structured collection of data objects that form a data type.

alert

1. A message or other indication that signals an event or an impending
event.

2. To cause the user's terminal to give some audible or visual indication
that an error or some other event has occurred.

alert character
A character that in the output stream causes a terminal to alert its user by
way of a visual or audible notification. The alert character is the character
designated by a '\a' in the C language. It is unspecified whether this

© Copyright IBM Corp. 2018 237

http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology

character is the exact sequence transmitted to an output device by the
system to accomplish the alert function.

alias

1. An alternative name for an integrated catalog facility (ICF) user catalog,
a file that is not a Virtual Storage Access Method (VSAM) file, or a
member of a partitioned data set (PDS) or a partitioned data set
extended (PDSE).

2. An alternative name used instead of a primary name.

aliasing
A compilation process that attempts to determine what aliases exist, so that
optimization does not result in incorrect program results.

alignment
The storing of data in relation to certain machine-dependent boundaries.

alternate code point
A syntactic code point that permits a substitute code point to be used. For
example, the left brace ({) can be represented by X'B0' and also by X'C0'.

American National Standards Institute (ANSI)
A private, nonprofit organization whose membership includes private
companies, U.S. government agencies, and professional, technical, trade,
labor, and consumer organizations. ANSI coordinates the development of
voluntary consensus standards in the U.S.

American Standard Code for Information Interchange (ASCII)
A standard code used for information exchange among data processing
systems, data communication systems, and associated equipment. ASCII
uses a coded character set consisting of 7-bit coded characters. See also
Extended Binary Coded Decimal Interchange Code.

AMODE
See addressing mode.

angle bracket
Either the left angle bracket (<) or the right angle bracket (>). In the
portable character set, these characters are referred to by the names
<less-than-sign> and <greater-than-sign>.

anonymous union
An unnamed object whose type is an unnamed union.

ANSI See American National Standards Institute.

AP See application program.

API See application programming interface.

application
One or more computer programs or software components that provide a
function in direct support of a specific business process or processes.

application generator
An application development tool that creates applications, application
components (panels, data, databases, logic, interfaces to system services),
or complete application systems from design specifications.

application program (AP)
A complete, self-contained program, such as a text editor or a web

238 User's Guide

browser, that performs a specific task for the user, in contrast to system
software, such as the operating system kernel, server processes, and
program libraries.

application programming interface (API)
An interface that allows an application program that is written in a
high-level language to use specific data or functions of the operating
system or another program.

archive library
A facility for grouping application-program object files. The archive library
file, when created for application-program object files, has a special symbol
table for members that are object files.

argument
A value passed to or returned from a function or procedure at run time.

argument declaration
See also parameter declaration.

arithmetic object
An integral object or objects having the float, double, or long double type.

array In programming languages, an aggregate that consists of data objects, with
identical attributes, each of which can be uniquely referenced by
subscripting. See also scalar.

array element
One of the data items in an array.

ASCII See American Standard Code for Information Interchange.

assembler
A computer program that converts assembly language instructions into
object code.

Assembler H
An IBM licensed program that translates symbolic assembler language into
binary machine language.

assembler user exit
A routine to tailor the characteristics of an enclave prior to its
establishment.

assembly language
A symbolic programming language that represents machine instructions of
a specific architecture.

assignment expression
An expression that assigns the value of the right operand expression to the
left operand variable and has as its value the value of the right operand.

automatic call library
A group of modules that are used as secondary input to the binder to
resolve external symbols left undefined after all the primary input has been
processed. The automatic call library can contain: object modules, with or
without binder control statements; load modules; and runtime routines.

automatic library call
The process by which the binder resolves external references by including
additional members from the automatic call library.

Glossary 239

automatic storage
Storage that is allocated on entry to a routine or block and is freed when
control is returned. See also dynamic storage.

auto storage class specifier
A specifier that enables the programmer to define a variable with
automatic storage; its scope is restricted to the current block.

B
background process

A process that does not require operator intervention but can be run by the
computer while the workstation is used to do other work. See also
foreground process.

background processing
A mode of program execution in which the shell does not wait for
program completion before prompting the user for another command.

backslash
The character \. The backslash enables a user to escape the special
meaning of a character. That is, typing a backslash before a character tells
the system to ignore any special meaning the character might have.

binary expression
An expression containing two operands and one operator.

binary stream
A sequence of characters that corresponds on a one-to-one basis with the
characters in the file. No character translation is performed on binary
streams.

binder

1. The z/OS program that processes the output of language translators
and compilers into an executable program (a load module or program
object). The binder replaces the linkage editor and batch loader. See
also prelinker.

2. See linkage editor.

bit field
A member of a structure or union that contains 1 or more named bits.

bitwise operator
An operator that manipulates the value of an object at the bit level.

blank character

1. One of the characters that belong to the blank character class as defined
via the LC_CTYPE category in the current locale. In the POSIX locale, a
blank character is either a tab or a space character.

2. A graphic representation of the space character.

block

1. A string of data elements recorded, processed, or transmitted as a unit.
The elements can be characters, words, or physical records.

2. In programming languages, a compound statement that coincides with
the scope of at least one of the declarations contained within it. A block
may also specify storage allocation or segment programs for other
purposes.

240 User's Guide

block statement
In the C language, a group of data definitions, declarations, and statements
that are located between a left brace and a right brace that are processed as
a unit. The block statement is considered to be a single, C-language
statement.

boundary alignment
The position in main storage of a fixed-length field, such as halfword or
doubleword, which is aligned on an integral boundary for that unit of
information. For example, a word boundary alignment stores the object in
a storage address evenly divisible by four.

brace Either of the characters left brace ({) and right brace (}). When an object is
enclosed in braces, the left brace immediately precedes the object and the
right brace immediately follows it.

bracket
Either of the characters left bracket ([) and right bracket (]).

break statement
A C control statement that contains the keyword break and a semicolon (;).
It is used to end an iterative or a switch statement by exiting from it at any
point other than the logical end. Control is passed to the first statement
after the iteration or switch statement.

built-in
In programming languages, pertaining to a language object that is defined
in the programming language specification.

built-in function
A function that is predefined by the compiler and whose code is
incorporated directly into the compiled object rather than called at run
time. See also function.

byte-oriented stream
A byte-oriented stream refers to a stream which only single byte
input/output is allowed.

C
callable service

A program service provided through a programming interface.

call chain
A trace of all active routines and subroutines, such as the names of
routines and the locations of save areas, that can be constructed from
information included in a system dump.

caller A function that calls another function.

cancelability point
A specific point within the current thread that is enabled to solicit cancel
requests.

carriage return character
A character that in the output stream indicates that printing should start at
the beginning of the same physical line in which the carriage-return
character occurred.

case clause
In a C switch statement, a CASE label followed by any number of
statements.

Glossary 241

case label
The word case followed by a constant expression and a colon. When the
selector is evaluated to the value of the constant expression, the statements
following the case label are processed.

cast expression
An expression that converts or reinterprets its operand.

cast operator
An operator that is used for explicit type conversions.

cataloged procedure
A set of job control language (JCL) statements that has been placed in a
library and that is retrievable by name.

catch block
A block associated with a try block that receives control when an exception
matching its argument is thrown. See also try block.

CCS See coded character set.

character

1. A sequence of one or more bytes representing a single graphic symbol
or control code.

2. In a computer system, a member of a set of elements that is used for
the representation, organization, or control of data.

character class
A named set of characters sharing an attribute associated with the name of
the class. The classes and the characters that they contain are dependent on
the value of the LC_CTYPE category in the current locale.

character constant
The actual character value (a symbol, quantity, or constant) in a source
program that is itself data, instead of a reference to a field that contains the
data.

character set
A defined set of characters with no coded representation assumed that can
be recognized by a configured hardware or software system. A character
set can be defined by alphabet, language, script, or any combination of
these items.

character special file
An interface file that provides access to an input or output device, which
uses character I/0 instead of block I/0.

character string
A contiguous sequence of characters terminated by and including the first
null byte.

child A node that is subordinate to another node in a tree structure. Only the
root node is not a child.

child enclave
The nested enclave created as a result of certain commands being issued
from a parent enclave. See also nested enclave, parent enclave.

child process
A process that is created by a parent process and that shares the resources
of the parent process to carry out a request.

242 User's Guide

C language
A language used to develop application programs in compact, efficient
code that can be run on different types of computers with minimal change.

C library
A system library that contains common C language subroutines for file
access, string operations, character operations, memory allocation, and
other functions.

CLIST See command list.

COBOL
See Common Business Oriented Language.

coded character set (CCS)
A set of unambiguous rules that establishes a character set and the
one-to-one relationships between the characters of the set and their coded
representations.

code element set
The result of applying rules that map a numeric code value to each
element of a character set. An element of a character set may be related to
more than one numeric code value but the reverse is not true. However,
for state-dependent encodings the relationship between numeric code
values to elements of a character set may be further controlled by state
information. The character set may contain fewer elements than the total
number of possible numeric code values; that is, some code values may be
unassigned. X/Open.

code generator
The part of the compiler that physically generates the object code.

code page
A particular assignment of code points to graphic characters. Within a
given code page, a code point can have only one specific meaning. A code
page also identifies how undefined code points are handled. See also code
point.

code point

1. An identifier in an alert description that represents a short unit of text.
The code point is replaced with the text by an alert display program.

2. A unique bit pattern that represents a character in a code page. See also
code page.

collating element
The smallest entity used to determine the logical ordering of strings. A
collating element consists of either a single character, or two or more
characters collating as a single entity. The value of the LC_COLLATE
category in the current locale determines the current set of collating
elements. See also collating sequence.

collating sequence
The relative ordering of collating elements as determined by the setting of
the LC_COLLATE category in the current locale. The character order, as
defined for the LC_COLLATE category in the current locale, defines the
relative order of all collating elements, such that each element occupies a
unique position in the order.

collation
The logical ordering of characters and strings according to defined rules.

Glossary 243

collection
An abstract class without any ordering, element properties, or key
properties.

Collection Class Library
A complete set of abstract data structure such as trees, stacks, queues, and
linked lists.

column position
A unit of horizontal measure related to characters in a line. It is assumed
that each character in a character set has an intrinsic column width
independent of any output device. Each printable character in the portable
character set has a column width of one. The standard utilities, when used
as described in this document set, assume that all characters have integral
column widths. The column width of a character is not necessarily related
to the internal representation of the character (numbers of bits or bytes).
The column position of a character in a line is defined as one plus the sum
of the column widths of the preceding characters in the line. Column
positions are numbered starting from 1. X/Open.

comma expression
An expression that contains two operands separated by a comma.
Although the compiler evaluates both operands, the value of the right
operand is the value of the expression. If the left operand produces a
value, the compiler discards this value.

command
A request to perform an operation or run a program. When parameters,
arguments, flags, or other operands are associated with a command, the
resulting character string is a single command.

command list (CLIST)
A language for performing TSO tasks.

COMMAREA
See communication area.

Common Business Oriented Language (COBOL)
A high-level programming language that is used primarily for commercial
data processing.

compilation unit
A portion of a computer program sufficiently complete to be compiled
correctly.

compiler option
A keyword that can be specified to control certain aspects of compilation.
Compiler options can control the nature of the load module generated by
the compiler, the types of printed output to be produced, the efficient use
of the compiler, and the destination of error messages.

condition

1. An expression that can be evaluated as true, false, or unknown. It can
be expressed in natural language text, in mathematically formal
notation, or in a machine-readable language.

2. An exception that has been enabled, or recognized, by the Language
Environment and thus is eligible to activate user and language
condition handlers. Conditions can be detected by the
hardware/operating system and result in an interrupt. They can also be
detected by language-specific generated code or language library code.

244 User's Guide

conditional expression
A compound expression that contains a condition (the first expression), an
expression to be evaluated if the condition has a nonzero value (the second
expression), and an expression to be evaluated if the condition has the
value zero (the third expression).

condition handler
A user-written routine or language-specific routine (such as a PL/ION-unit
or C signal() function call) invoked by the Language Environment
condition manager to respond to conditions.

condition manager
The condition manager is the part of the common execution environment
that manages conditions by invoking various user-written and
language-specific condition handlers.

condition token
In Language Environment, a data type consisting of 96 bits (12 bytes). The
condition token contains structured fields that indicate various aspects of a
condition including the severity, the associated message number, and
information that is specific to a given instance of the condition.

constant
A language element that specifies an unchanging value. Constants are
classified as string constants or numeric constants.

constant expression
An expression that has a value that can be determined during compilation
and that does not change during the running of the program.

constant propagation
An optimization technique where constants used in an expression are
combined and new ones are generated. Mode conversions are done to
allow some intrinsic functions to be evaluated at compile time.

constructed reentrancy
The attribute of applications that contain external data and require
additional processing to make them reentrant. See also natural reentrancy.

control character
A character whose occurrence in a particular context initiates, modifies, or
stops a control function.

controlling process
A session leader that has control of a terminal.

controlling terminal
The active workstation from which the process group for that process was
started. Each session may have at most one controlling terminal associated
with it, and a controlling terminal is associated with exactly one session.

control section (CSECT)
The part of a program specified by the programmer to be a relocatable
unit, all elements of which are to be loaded into adjoining main storage
locations.

control statement
In programming languages, a statement that is used to interrupt the
continuous sequential processing of programming statements. Conditional
statements such as IF, PAUSE, and STOP are examples of control
statements.

Glossary 245

conversion

1. In programming languages, the transformation between values that
represent the same data item but belong to different data types.
Information may be lost because of conversion since accuracy of data
representation varies among different data types.

2. The process of changing from one form of representation to another.
Changing a code point that is assigned to a character in one code page
to its corresponding code point in another code page is an example of
conversion.

Coordinated Universal Time (UTC)
The international standard of time that is kept by atomic clocks around the
world.

cross-compiler
A compiler that produces executable files that run on a platform other than
the one on which the compiler is installed.

CSECT
See control section.

current working directory
See working directory.

cursor A reference to an element at a specific position in a data structure.

D
data abstraction

A data type with a private representation and a public set of operations
(functions or operators) which restrict access to that data type to that set of
operations.

data definition (DD)
A program statement that describes the features of, specifies relationships
of, or establishes the context of data. A data definition reserves storage and
can provide an initial value.

data definition name (ddname)
The name of a data definition (DD) statement that corresponds to a data
control block that contains the same name.

data definition statement (DD statement)
A job control statement that is used to define a data set for use by a batch
job step, started task or job, or an online user.

data member
The smallest possible piece of complete data. Elements are composed of
data members.

data object
An element of data structure such as a file, an array, or an operand that is
needed for the execution of an application.

data set
The major unit of data storage and retrieval, consisting of a collection of
data in one of several prescribed arrangements and described by control
information to which the system has access.

246 User's Guide

data stream
The commands, control codes, data, or structured fields that are
transmitted between an application program and a device such as printer
or nonprogrammable display station.

data structure
In Open Source Initiative (OSI), the syntactic structure of symbolic
expressions and their storage allocation characteristics.

data type
A category that identifies the mathematical qualities and internal
representation of data and functions.

Data Window Services (DWS)
Services provided as part of the Callable Services Library that allow
manipulation of data objects such as VSAM linear data sets and temporary
data objects known as TEMPSPACE.

DBCS See double-byte character set.

DCT See destination control table.

DD See data definition.

ddname
See data definition name.

DD statement
See data definition statement.

dead code
Code that is never referenced, or that is always branched over.

dead store
A store into a memory location that will later be overwritten by another
store without any intervening loads. In this case, the earlier store can be
deleted.

decimal constant
A numerical data type used in standard arithmetic operations. Decimal
constants can contain any digits 0 through 9. See also integer constant.

decimal overflow
A condition that occurs when one or more nonzero digits are lost because
the destination field in a decimal operation is too short to contain the
results.

declaration

1. In the C language, a description that makes an external object or
function available to a function or a block statement.

2. A statement that establishes the names and characteristics of data
objects and functions used in a program.

default clause
In the C languages, within a switch statement, the keyword default
followed by a colon, and one or more statements. When the conditions of
the specified case labels in the switch statement do not hold, the default
clause is chosen.

default initialization
The initial value assigned to a data object by the compiler if no initial
value is specified by the programmer. In C language, external and static

Glossary 247

variables receive a default initialization of zero, while the default
initialization for auto and register variables is undefined.

definition
A declaration that reserves storage and can provide an initial value for a
data object or define a function.

degree
The number of children of a node.

dereference
In the C language, to apply the unary operator * to a pointer to access the
object the pointer points to. See also indirection.

descriptor
A PL/I control block that holds information such as string lengths, array
subscript bounds, and area sizes, and is passed from one PL/I routine to
another during run time.

device A piece of equipment such as a workstation, printer, disk drive, tape unit,
or remote system.

difference
Given two sets A and B, the set of all elements contained in A but not in B
(A-B).

digraph
A combination of two keystrokes used to represent unavailable characters
in a C source program. Digraphs are read as tokens during the
preprocessor phase.

directive
A control statement that directs the operation of a feature and is
recognized by a preprocessor or other tool. See also pragma.

directory

1. The part of a partitioned data set that describes the members in the
data set.

2. In a hierarchical file system, a grouping of related files.

display
To direct the output to the user's terminal. If the output is not directed to
the terminal, the results are undefined.

do statement
A looping statement that contains the keyword do, followed by a statement
(the action), the keyword while, and an expression in parentheses (the
condition).

dot A symbol (.) that indicates the current directory in a relative path name.
See also period.

double-byte character set (DBCS)
A set of characters in which each character is represented by 2 bytes. These
character sets are commonly used by national languages, such as Japanese
and Chinese, that have more symbols than can be represented by a single
byte. See also single-byte character set.

double-precision
Pertaining to the use of two computer words to represent a number in
accordance with the required precision.

248 User's Guide

doubleword
A contiguous sequence of bits or characters that comprises two computer
words and is capable of being addressed as a unit. See also halfword,
word.

DSA See dynamic storage area.

DWS See Data Window Services.

dynamic
Pertaining to an operation that occurs at the time it is needed rather than
at a predetermined or fixed time.

dynamic access
A process where records can be accessed sequentially or randomly,
depending on the form of the input/output request. See also access mode.

dynamic allocation
Assignment of system resources to a program when the program is
executed rather than when it is loaded into main storage.

dynamic binding
The act of resolving references to external variables and functions at run
time.

dynamic storage
An area of storage that is explicitly allocated by a program or procedure
while it is running. See also automatic storage.

dynamic storage area (DSA)
A type of storage allocation in which storage is assigned to a program or
application at run time.

E
EBCDIC

See Extended Binary Coded Decimal Interchange Code.

effective group ID
An attribute of a process that is used in determining various permissions,
including file access permissions. This value is subject to change during the
process lifetime.

element
The smallest unit in a table, array, list, set, or other structure. Examples of
an element are a value in a list of values and a data field in an array.

element equality
A relation that determines if two elements are equal.

element occurrence
A single instance of an element in a collection. In a unique collection,
element occurrence is synonymous with element value.

element value
All the instances of an element with a particular value in a collection. In a
non-unique collection, an element value may have more than one
occurrence. In a unique collection, element value is synonymous with
element occurrence.

else clause
The part of an if statement that contains the keyword 'else' followed by a

Glossary 249

statement. The else clause provides an action that is started when the if
condition evaluates to a value of 0 (false).

empty line
A line consisting of only a newline character. X/Open.

empty string
A character array whose first element is a null character.

encapsulation
In object-oriented programming, the technique that is used to hide the
inherent details of an object, function, or class from client programs.

entry point
The address or label of the first instruction processed or entered in a
program, routine, or subroutine.There might be a number of different entry
points, each corresponding to a different function or purpose.

enum constant
See enumeration constant.

enumeration constant (enum constant)
In the C language, an identifier, with an associated integer value, defined
in an enumerator. An enumeration constant may be used anywhere an
integer constant is allowed.

enumeration data type
A data type that represents a set of values that a user defines.

enumeration tag
The identifier that names an enumeration data type.

enumeration type
A data type that defines a set of enumeration constants.

enumerator
An enumeration constant and its associated value.

equivalence class
A grouping of characters or character strings that are considered equal for
purposes of collation. For example, many languages place an uppercase
character in the same equivalence class as its lowercase form, but some
languages distinguish between accented and unaccented character forms
for the purpose of collation.

escape sequence
A string of bit combinations that is used to escape from normal data, such
as text code points, into control information.

exception
A condition or event that cannot be handled by a normal process.

executable file
A file that contains programs or commands that perform operations on
actions to be taken.

executable program
A program in a form suitable for execution by a computer. The program
can be an application or a shell script.

Extended Binary Coded Decimal Interchange Code (EBCDIC)
A coded character set of 256 8-bit characters developed for the
representation of textual data. See also American Standard Code for
Information Interchange.

250 User's Guide

extended-precision
Pertains to the use of more than two computer words to represent a
floating point number in accordance with the required precision. For
example, in z/OS, four computer words are used for an extended-precision
number.

extension
An element or function not included in the standard language.

F
FIFO special file

A type of file with the property that data written to such a file is read on a
first-in-first-out (FIFO) basis.

file descriptor
A positive integer or a data structure that uniquely identifies an open file
for the purpose of file access.

file mode
An object containing the file permission bits and other characteristics of a
file.

file permission bit
Information about a file that is used, along with other information, to
determine whether a process has read, write, or execute permission to a
file. The use of file permission bits is described in file access permissions.

file scope
A property of a file name that is declared outside all blocks, classes, and
function declarations and that can be used after the point of declaration in
a source file.

filter A command that reads standard input data, modifies the data, and sends it
to standard output. A pipeline usually has several filters.

flat collection
A collection that has no hierarchical structure.

float constant

1. A constant representing a non-integral number.
2. A number containing a decimal point, an exponent, or both a decimal

point and an exponent. The exponent contains an "e" or "E," an optional
sign (+ or -), and one or more digits (0 through 9).

footprint
The amount of computer storage that is occupied by a computer program.
For example, if a program occupies a large amount of storage, it has a
large footprint.

foreground process
A process that must be completed before another command is issued. See
also background process.

foreground process group
A group whose member processes have privileges that are denied to
background processes when the controlling terminal is being accessed.
Each controlling terminal can have only one foreground process group.

form-feed character
A character in the output stream that indicates that printing should start

Glossary 251

on the next page of an output device. The form-feed character is
designated by '\f' in the C language. If the form-feed character is not the
first character of an output line, the result is unspecified. X/Open.

for statement
A looping statement that contains the word for followed by a list of
expressions enclosed in parentheses (the condition) and a statement (the
action). Each expression in the parenthesized list is separated by a
semicolon, which cannot be omitted.

forward declaration
A declaration of a class or function made earlier in a compilation unit, so
that the declared class or function can be used before it has been defined.

freestanding application

1. An application that is created to run without the run-time environment
or library with which it was developed.

2. An application that does not use the services of the dynamic run-time
library or of the Language Environment. Under z/OS C support, this
ability is a feature of the System Programming C support.

free store
Dynamically allocated memory. New and delete are used to allocate and
deallocate free store.

function
A named group of statements that can be called and evaluated and can
return a value to the calling statement. See also built-in function.

function call
An expression that transfers the path of execution from the current
function to a specified function (the called function). A function call
contains the name of the function to which control is transferred and a
parenthesized list of values.

function declarator
The part of a function definition that names the function, provides
additional information about the return value of the function, and lists the
function parameters.

function definition
The complete description of a function. A function definition contains an
optional storage class specifier, an optional type specifier, a function
declarator, optional parameter declarations, and a block statement (the
function body).

function prototype
A function declaration that provides type information for each parameter.
It is the first line of the function (header) followed by a semicolon (;). The
declaration is required by the compiler at the time that the function is
declared, so that the compiler can check the type.

function scope
Labels that are declared in a function have function scope and can be used
anywhere in that function after their declaration.

G
GCC See GNU Compiler Collection.

252 User's Guide

GDDM
See Graphical Data Display Manager.

Generalized Object File Format (GOFF)
This object module format extends the capabilities of object modules so
that they can contain more information. It is required for XPLINK.

global Pertaining to information available to more than one program or
subroutine. See also local.

global variable
A symbol defined in one program module that is used in other program
modules that are independently compiled.

GMT See Greenwich mean time.

GNU Compiler Collection (GCC)
An open source collection of compilers supporting C, C++, Objective-C,
Ada, Java, and Fortran.

GOFF See Generalized Object File Format.

Graphical Data Display Manager (GDDM)
An IBM computer-graphics system that defines and displays text and
graphics for output on a display or printer.

graphic character
A visual representation of a character, other than a control character, that is
normally produced by writing, printing, or displaying.

Greenwich mean time (GMT)
The mean solar time at the meridian of Greenwich, England.

H
halfword

A contiguous sequence of bits or characters that constitutes half a
computer word and can be addressed as a unit. See also doubleword,
word.

hash function
A function that determines which category, or bucket, to put an element in.
A hash function is needed when implementing a hash table.

hash table

1. A data structure that divides all elements into (preferably) equal-sized
categories, or buckets, to allow quick access to the elements. The hash
function determines which bucket an element belongs in.

2. A table of information that is accessed by way of a shortened search
key (the hash value). The use of a hash table minimizes average search
time.

header file
See include file.

heap storage
An area of storage used for allocation of storage that has a lifetime that is
not related to the execution of the current routine. The heap consists of the
initial heap segment and zero or more increments.

Glossary 253

hexadecimal constant
A constant, usually starting with special characters, that contains only
hexadecimal digits.

High Level Assembler
An IBM licensed program that translates symbolic assembler language into
binary machine language.

hiperspace memory file
A type of file that is stored in a single buffer in an address space, with the
rest of the data being kept in a hiperspace. In contrast, for regular files, all
the file data is stored in a single address space.

hook A location in a compiled program where the compiler has inserted an
instruction that allows programmers to interrupt the program (by setting
breakpoints) for debugging purposes.

hybrid code
Program statements that have not been internationalized with respect to
code page, especially where data constants contain variant characters. Such
statements can be found in applications written in older implementations
of MVS, which required syntax statements to be written using code page
IBM-1047 exclusively. Such applications cannot be converted from one code
page to another using iconv().

I
ID See identifier.

identifier (ID)
One or more characters used to identify or name a data element and
possibly to indicate certain properties of that data element.

if statement
A conditional statement that specifies a condition to be tested and the
action to be taken if the condition is satisfied.

ILC

1. See interlanguage communication.
2. See interlanguage call.

implementation-defined
Pertaining to behavior that is defined by the compiler rather than by a
language standard. Programs that rely on implementation-defined behavior
may behave differently when compiled with different compilers. See also
undefined behavior.

IMS™ See Information Management System.

include directive
A preprocessor directive that causes the preprocessor to replace the
statement with the contents of a specified file.

include file
A text file that contains declarations that are used by a group of functions,
programs, or users.

incomplete type
A type that has no value or meaning when it is first declared. There are
three incomplete types: void, arrays of unknown size and structures, and
unions of unspecified content.

254 User's Guide

indirection

1. A mechanism for connecting objects by storing, in one object, a
reference to another object. See also dereference.

2. In the C language, the application of the unary operator * to a pointer
to access the object to which the pointer points.

induction variable
A controlling variable of a loop.

Information Management System (IMS)
Any of several system environments that have a database manager and
transaction processing that can manage complex databases and terminal
networks.

initial heap
A heap that is controlled by the HEAP run-time option and designated by
a heap_id of 0.

initializer
An expression used to initialize data objects.

inline To replace a function call with a copy of the function's code during
compilation.

inline function
A function whose actual code replaces a function call. A function that is
both declared and defined in a class definition is an example of an inline
function. Another example is one which you explicitly declared inline by
using the keyword inline. Both member and non-member functions can be
inlined.

input stream
A sequence of control statements and data submitted to an operating
system by an input device.

instruction
A program statement that specifies an operation to be performed by the
computer, along with the values or locations of operands. This statement
represents the programmer's request to the processor to perform a specific
operation.

instruction scheduling
An optimization technique that reorders instructions in code to minimize
execution time.

integer constant
A decimal, octal, or hexadecimal constant. See also decimal constant.

integral object
A character object, an object having an enumeration type, an object having
variations of the type int, or an object that is a bit field.

Interactive System Productivity Facility (ISPF)
An IBM licensed program that serves as a full-screen editor and dialog
manager. Used for writing application programs, it provides a means of
generating standard screen panels and interactive dialogs between the
application programmer and the terminal user.

interlanguage call (ILC)
A call to a procedure or function made by a program written in one
language to a procedure or function coded in a different language.

Glossary 255

interlanguage communication (ILC)
The ability of routines written in different programming languages to
communicate. ILC support enables the application writer to readily build
applications from component routines written in a variety of languages.

interoperability
The ability of a computer or program to work with other computers or
programs.

interprocess communication (IPC)
The process by which programs send messages to each other. Sockets,
semaphores, signals, and internal message queues are common methods of
interprocess communication.

IPC See interprocess communication.

ISPF See Interactive System Productivity Facility.

iteration
The repetition of a set of computer instructions until a condition is
satisfied.

J
JCL See job control language.

job control language (JCL)
A command language that identifies a job to an operating system and
describes the job requirements.

K
kernel The part of an operating system that contains programs for such tasks as

input/output, management and control of hardware, and the scheduling of
user tasks.

keyword

1. One of the predefined words of a programming language, artificial
language, application, or command. See also operand, parameter.

2. A symbol that identifies a parameter in job control language (JCL).

L
label An identifier within or attached to a set of data elements.

Language Environment
An element of z/OS that provides a common runtime environment and
common runtime services for C/C++, COBOL, PL/I, and Fortran
applications.

last element
The element visited last in an iteration over a collection. Each collection
has its own definition for last element. For example, the last element of a
sorted set is the element with the largest value.

leaf In a tree, an entry or node that has no children.

library

1. A collection of model elements, including business items, processes,
tasks, resources, and organizations.

256 User's Guide

2. A set of object modules that can be specified in a link command.

linkage
Refers to the binding between a reference and a definition. A function has
internal linkage if the function is defined inline as part of the class, is
declared with the inline keyword, or is a non-member function declared
with the static keyword. All other functions have external linkage.

linkage editor
A computer program for creating load modules from one or more object
modules or load modules by resolving cross-references among the modules
and, if necessary, adjusting addresses.

linker A program that resolves cross-references among separately compiled object
modules and then assigns final addresses to create a single executable
program.

link pack area (LPA)
The portion of virtual storage below 16 MB that contains frequently used
modules.

literal A symbol or a quantity in a source program that is itself data, rather than a
reference to data.

loader A program that copies an executable file into main storage so that the file
can be run.

load module
A program in a form suitable for loading into main storage for execution.

local

1. Pertaining to information that is defined and used only in one
subdivision of a computer program. See also global.

2. In programming languages, pertaining to the relationship between a
language object and a block such that the language object has a scope
contained in that block.

local custom
A convention of a geographical area or territory for such things as date,
time, and currency formats. X/Open.

locale A setting that identifies language or geography and determines formatting
conventions such as collation, case conversion, character classification, the
language of messages, date and time representation, and numeric
representation.

local scope
A name declared in a block that has local scope and can only be used in
that block.

loop unrolling
An optimization that increases the step of a loop, and duplicates the
expressions within a loop to reflect the increase in the step. This can
improve instruction scheduling and memory access time.

LPA See link pack area.

lvalue An expression that represents a data object that can be viewed, tested, and
changed. An lvalue is usually the left operand in an assignment expression.

Glossary 257

M
macro An instruction that causes the execution of a predefined sequence of

instructions.

macro call
See macro.

main function
A function that has the identifier main. Each program must have exactly
one function named main. The main function is the first user function that
receives control when a program starts to run.

makefile
In UNIX, a text file containing a list of an application's parts. The make
utility uses makefiles to maintain application parts and dependencies.

make utility
A utility that maintains all of the parts and dependencies for an
application. The make utility uses a makefile to keep the parts of a
program synchronized. If one part of an application changes, the make
utility updates all other files that depend on the changed part.

manipulator
A value that can be inserted into streams or extracted from streams to
affect or query the behavior of the stream.

method
See member function.

method file

1. For ASCII locales, a file that defines the method functions to be used by
C runtime locale-sensitive interfaces. A method file also identifies
where the method functions can be found. IBM supplies several
method files used to create its standard set of ASCII locales. Other
method files can be created to support customized or user-created code
pages. Such customized method files replace IBM-supplied charmap
method functions with user-written functions.

2. A file that allows users to indicate to the localedef utility where to look
for user-provided methods for processing user-designed code pages.

migrate
To install a new version or release of a program to replace an earlier
version or release.

module
A program unit that is discrete and identifiable with respect to compiling,
combining with other units, and loading.

multibyte character
A mixture of single-byte characters from a single-byte character set and
double-byte characters from a double-byte character set.

multibyte control
See escape sequence.

multicharacter collating element
A sequence of two or more characters that collate as an entity. For
example, in some coded character sets, an accented character is represented
by a non-spacing accent, followed by the letter. Other examples are the
Spanish elements ch and ll. X/Open.

258 User's Guide

multiprocessor
A processor complex that has more than one central processor.

multitasking
A mode of operation in which two or more tasks can be performed at the
same time.

mutex See mutual exclusion.

mutex attribute object
A type of attribute object with which a user can manage mutual exclusion
(mutex) characteristics by defining a set of variables to be used during its
creation. A mutex attribute object eliminates the need to redefine the same
set of characteristics for each mutex object created. See also mutual
exclusion.

mutex object
An identifier for a mutual exclusion (mutex).

mutual exclusion (mutex)
A flag used by a semaphore to protect shared resources. The mutex is
locked and unlocked by threads in a program. See also mutex attribute
object.

N
namespace

A category used to group similar types of identifiers.

natural reentrancy
The attribute of applications that contain no static external data and do not
require additional processing to make them reentrant. See also constructed
reentrancy.

nested enclave
A new enclave created by an existing enclave. The nested enclave that is
created must be a new main routine within the process. See also child
enclave, parent enclave.

newline character (NL)
A control character that causes the print or display position to move down
one line.

nickname
See alias.

NL See newline character.

nonprinting character
See control character.

NUL See null character.

null character (NUL)
A control character with the value of X'00' that represents the absence of a
displayed or printed character.

null pointer
The value that is obtained by converting the number 0 into a pointer; for
example, (void *) 0. The C language guarantees that this value will not
match that of any legitimate pointer, so it is used by many functions that
return pointers to indicate an error.

Glossary 259

null statement
A statement that consists of a semicolon.

null string
A character or bit string with a length of zero.

null value
A parameter position for which no value is specified.

null wide-character code
A wide-character code with all bits set to zero.

number sign
The character #, which is also referred to as the hash sign.

O
object

1. A region of storage. An object is created when a variable is defined. An
object is destroyed when it goes out of scope. See also instance.

2. In object-oriented design or programming, a concrete realization
(instance) of a class that consists of data and the operations associated
with that data. An object contains the instance data that is defined by
the class, but the class owns the operations that are associated with the
data.

object module
A set of instructions in machine language that is produced by a compiler
or assembler from a subroutine or source module and can be input to the
linking program. The object module consists of object code.

octal constant
The digit 0 (zero) followed by any digits 0 through 7.

open file
A file that is currently associated with a file descriptor.

operand
An entity on which an operation is performed.

operating system (OS)
A collection of system programs that control the overall operation of a
computer system.

operator precedence
In programming languages, an order relationship that defines the sequence
of the application of operators with an expression.

orientation
The orientation of a stream refers to the type of data which may pass
through the stream. A stream without orientation is one on which no
stream I/O has been performed.

OS See operating system.

overflow
The condition that occurs when data cannot fit in the designated field.

overlay
The technique of repeatedly using the same areas of internal storage
during different stages of a program. Unions are used to accomplish this in
C.

260 User's Guide

P
parameter (parm)

A value or reference passed to a function, command, or program that
serves as input or controls actions. The value is supplied by a user or by
another program or process. See also keyword, operand.

parameter declaration
The description of a value that a function receives. A parameter declaration
determines the storage class and the data type of the value. See also
argument declaration.

parent enclave
The enclave that issues a call to system services or language constructs to
create a nested (or child) enclave. See also child enclave, nested enclave.

parent process
A process that is created to carry out a request or set of requests. The
parent process, in turn, can create child processes to process requests for
the parent.

parent process ID (PPID)
An attribute of a new process identifying the parent of the process. The
parent process ID of a process is the process ID of its creator for the
lifetime of the creator. After the creator's lifetime has ended, the parent
process ID is the process ID of an implementation-dependent system
process.

parm See parameter.

partitioned concatenation
The allocation of partitioned data sets (PDSs), partitioned data sets
extended (PDSEs), UNIX file directories, or any combination of these such
that the basic partitioned access method (BPAM) retrieves them as a single
data set.

partitioned data set (PDS)
A data set on direct access storage that is divided into partitions, called
members, each of which can contain a program, part of a program, or data.
See also sequential data set.

partitioned data set extended (PDSE)
A data set that contains an indexed directory and members that are similar
to the directory and members of partitioned data sets (PDSs). See also
library.

path name
A name that specifies all directories leading to a file plus the file name
itself.

path name resolution
The process of resolving a path name to a particular file in a file hierarchy.
There may be multiple path names that resolve to the same file. X/Open.

pattern
A sequence of characters used either with regular expression notation or
for path name expansion, as a means of selecting various characters strings
or path names, respectively. The syntaxes of the two patterns are similar,
but not identical.

PDS See partitioned data set.

Glossary 261

PDSE See partitioned data set extended.

period The symbol ".". The term dot is used for the same symbol when referring
to a web address or file extension. This character is named <period> in the
portable character set. See also dot.

permission
The ability to access a protected object, such as a file or directory. The
number and meaning of permissions for an object are defined by the access
control list.

persistent environment
An environment that once created by the user may be used repeatedly
without incurring the overhead of initialization and termination for each
call. The environment remains available until explicitly terminated by the
user.

PGID See process group ID.

PID See process ID.

platform
The combination of an operating system and hardware that makes up the
operating environment in which a program runs.

pointer
A data element or variable that holds the address of a data object or a
function. See also scalar.

portability

1. The ability of a program to run on more than one type of computer
system without modification.

2. The ability of a programming language to compile successfully on
different operating systems without requiring changes to the source
code.

portable character set
A set of characters, specified in POSIX 1003.2, section 4, that must be
supported by conforming implementations.

portable file name character set
The set of characters from which portable file names must be constructed
to be portable across implementations conforming to the ISO POSIX-1
standard and to ISO/IEC 9945.

positional parameter
A parameter that must appear in a specified location, relative to other
parameters.

PPID See parent process ID.

pragma
A standardized form of comment which has meaning to a compiler. A
pragma usually conveys non-essential information, often intended to help
the compiler to optimize the program. See also directive.

precedence
The priority system for grouping different types of operators with their
operands.

predefined macro
An identifier predefined by the compiler, which will be expanded by the
preprocessor during compilation.

262 User's Guide

preinitialization
A process by which an environment or library is initialized once and can
then be used repeatedly to avoid the inefficiency of initializing the
environment or library each time it is needed.

prelinker
A utility that preprocesses an object for certain programs. See also binder.

preprocessor
A routine that performs initial processing and translation of source code or
data prior to compiling the source code or processing the data in another
program such as an emulator.

preprocessor directive
In the C language, a statement that begins with the symbol # and is
interpreted by the preprocessor during compilation.

preprocessor statement
In the C language, a statement that begins with the symbol # and contains
instructions that the preprocessor can interpret.

primary expression

1. Literals, names, and names qualified by the :: (scope resolution)
operator.

2. Any of the following types of expressions: a) identifiers, b)
parenthesized expressions, c) function calls, d) array element
specifications, e) structure member specifications, or f) union member
specifications.

process

1. An address space and single thread of control that executes within that
address space, and its required system resources. A process is created
by another process issuing the fork() function. The process that issues
the fork() function is known as the parent process, and the new process
created by the fork() function is known as the child process.

2. An instance of a program running on a system and the resources that it
uses.

process group
A collection of processes in a system that is identified by a process group
ID.

process group ID (PGID)
The unique identifier representing a process group during its lifetime. A
process group ID is a positive integer that is not reused by the system until
the process group lifetime ends.

process group lifetime
A period of time that begins when a process group is created and ends
when the last remaining process in the group leaves the group because
either it is the end of the last process' lifetime or the last remaining process
is calling the setsid() or setpgid() functions. X/Open. ISO.1.

process ID (PID)
The unique identifier that represents a process. A process ID is a positive
integer and is not reused until the process lifetime ends.

process lifetime
The period of time that begins when a process is created and ends when
the process ID is returned to the system. X/Open. ISO.1. After a process is

Glossary 263

created with a fork() function, it is considered active. Its thread of control
and address space exist until it terminates. It then enters an inactive state
where certain resources may be returned to the system, although some
resources, such as the process ID, are still in use. When another process
executes a wait() or waitpid() function for an inactive process, the
remaining resources are returned to the system. The last resource to be
returned to the system is the process ID. At this time, the lifetime of the
process ends.

profiling
A performance analysis process that is based on statistics for the resources
that are used by a program or application.

program object
All or part of a computer program in a form suitable for loading into
virtual storage for execution. Program objects are stored in partitioned data
set extended (PDSE) program libraries and have fewer restrictions than
load modules. Program objects are produced by the binder.

program unit
See compilation unit.

prototype
A function declaration or definition that includes both the return type of
the function and the types of its parameters.

Q
QMF™ See Query Management Facility™.

qualified name

1. A data set name consisting of a string of names separated by periods;
for example, TREE.FRUIT.APPLE is a qualified name.

qualified type name
A name used to reduce complex class name syntax by using typedefs to
represent qualified class names.

Query Management Facility (QMF)
An IBM query and report writing facility that supports a variety of tasks
such as data entry, query building, administration, and report analysis.

queue A data structure for processing work in which the first element added to
the queue is the first element processed. This order is referred to as first-in
first-out (FIFO).

quotation mark
The characters " and '.

R
radix character

The character that separates the integer part of a number from the
fractional part. X/Open .

random access
An access mode in which records can be referred to, read from, written to,
or removed from a file in any order.

264 User's Guide

real group ID
The attribute of a process that, at the time of process creation, identifies the
group of the user who created the process. This value is subject to change
during the process lifetime.

real user ID
The attribute of a process that, at the time a process is created, identifies
the user who created the process.

reason code
A value used to indicate the specific reason for an event or condition.

reassociation
An optimization technique that rearranges the sequence of calculations in a
subscript expression producing more candidates for common expression
elimination.

redirection
In a shell, a method of associating files with the input or output of
commands.

reentrant
The attribute of a program or routine that allows the same copy of the
program or routine to be used concurrently by two or more tasks.

refresh
To ensure that the information on the user's terminal screen is up-to-date.

register variable
A variable defined with the register storage class specifier. Register
variables have automatic storage.

regular expression

1. A set of characters, meta characters, and operators that define a string
or group of strings in a search pattern.

2. A string containing wildcard characters and operations that define a set
of one or more possible strings.

3. A mechanism for selecting specific strings from a set of character
strings.

regular file
A file that is a randomly accessible sequence of bytes, with no further
structure imposed by the system. [POSIX.1]

relation
An unordered flat collection class that uses keys, allows for duplicate
elements, and has element equality.

relative path name
A string of characters that is used to refer to an object and that starts at
some point in the directory hierarchy other than the root. The starting
point is frequently a user's current directory.

reserved word
A word that is defined by a programming language and that cannot be
used as an identifier or changed by the user.

residency mode (RMODE)
In z/OS, a program attribute that refers to where a module is prepared to
run. RMODE can be 24 or ANY. ANY refers to the fact that the module can
be loaded either above or below the 16M line. RMODE 24 means the
module expects to be loaded below the 16M line.

Glossary 265

reverse solidus

RMODE
See residency mode.

runtime environment
A set of resources that are used to run a program or process.

runtime library
A compiled collection of functions whose members can be referred to by
an application program at run time.

S
SBCS See single-byte character set.

scalar An arithmetic object, an enumerated object, or a pointer to an object.

scope A part of a source program in which an object is defined and recognized.

SDK See software development kit.

semaphore
An object used by multi-threaded applications for signaling purposes and
for controlling access to serially reusable resources. Processes can be locked
to a resource with semaphores if the processes follow certain programming
conventions.

sequence
A sequentially ordered flat collection.

sequential access
The process of referring to records one after another in the order in which
they appear on the file. See also access mode.

sequential concatenation
The allocation of sequential data sets, partitioned data set (PDS) members,
partitioned data set extended (PDSE) members, UNIX files, or any
combination of these such that the system retrieves them as a single,
sequential, data set.

sequential data set
A data set whose records are organized based on their successive physical
positions, such as on magnetic tape. See also partitioned data set.

session
A collection of process groups established for job control purposes.

shell A software interface between users and an operating system. Shells
generally fall into one of two categories: a command line shell, which
provides a command line interface to the operating system; and a
graphical shell, which provides a graphical user interface (GUI).

signal

1. A mechanism by which a process can be notified of, or affected by, an
event occurring in the system. Examples of such events include
hardware exceptions and specific actions by processes.

2. In operating system operations, a method of inter-process
communication that simulates software interrupts.

3. A condition that might or might not be reported during program
execution. For example, a signal can represent erroneous arithmetic
operations, such as division by zero.

266 User's Guide

signal handler
A subroutine or function that is called when a signal occurs.

single-byte character set (SBCS)
A coded character set in which each character is represented by a 1-byte
code. A 1-byte code point allows representation of up to 256 characters. See
also double-byte character set.

single precision
The use of one computer word to represent a number, in accordance with
the required precision.

slash The character /, also known as forward slash. This character is named
<slash> in the portable character set.

socket In the Network Computing System (NCS), a port on a specific host; a
communications end point that is accessible through a protocol family's
addressing mechanism. A socket is identified by a socket address.

software development kit (SDK)
A set of tools, APIs, and documentation to assist with the development of
software in a specific computer language or for a particular operating
environment.

sorted map
A sorted flat collection with key and element equality.

sorted relation
A sorted flat collection that uses keys, has element equality, and allows
duplicate elements.

sorted set
A sorted flat collection with element equality.

source module
See source program.

source program
A set of instructions that are written in a programming language and must
be translated into machine language before the program can be run.

space character
In the portable character set, the <space> character.

spanned record
A logical record stored in more than one block on a storage medium.

spill area
A storage area that is used to save the contents of registers.

square bracket
See bracket.

stack frame
See dynamic storage area.

standard error (STDERR)
The output stream to which error messages or diagnostic messages are
sent. See also standard input, standard output.

standard input (STDIN)
An input stream from which data is retrieved. Standard input is normally

Glossary 267

associated with the keyboard, but if redirection or piping is used, the
standard input can be a file or the output from a command. See also
standard error.

standard output (STDOUT)
The output stream to which data is directed. Standard output is normally
associated with the console, but if redirection or piping is used, the
standard output can be a file or the input to a command. See also standard
error.

stanza A grouping of options in a configuration file to control various aspects of
compilation by default.

statement
In programming languages, a language construct that represents a step in a
sequence of actions or a set of declarations.

static binding
The act of resolving references to external variables and functions before
run time.

STDERR
See standard error.

STDIN
See standard input.

STDOUT
See standard output.

storage class specifier
A storage class keyword that determines storage duration, scope, and
linkage.

stream
A file access object that allows access to an ordered sequence of characters,
as described by the ISO C standard. Such objects can be created by the
fdopen() or fopen() functions, and are associated with a file descriptor. A
stream provides the additional services of user-selectable buffering and
formatted input and output.

string A contiguous sequence of bytes terminated by and including the first null
byte.

string constant
Zero or more characters enclosed in double quotation marks. See also
string literal.

string literal
Zero or more characters enclosed in double quotation marks. See also
string constant.

striped data set
An extended-format data set that occupies multiple volumes. A striped
data set is a software implementation of sequential data striping.

struct See structure.

struct tag
See structure tag.

structure
A class data type that contains an ordered group of data objects. Unlike an
array, the data objects within a structure can have varied data types.

268 User's Guide

structure tag
The identifier that names a structure data type.

stub routine
Within a runtime library, a routine that contains the minimum lines of code
needed to locate a given routine.

subprogram
In the IPA Link version of the Inline Report listing section, an equivalent
term for 'function'.

subscript
One or more expressions, each enclosed in brackets, that follow an array
name. A subscript refers to an element in an array.

subtree
A tree structure created by arbitrarily denoting a node to be the root node
in a tree. A subtree is always part of a whole tree.

superset
Given two sets A and B, A is a superset of B if and only if all elements of B
are also elements of A. That is, A is a superset of B if B is a subset of A.

support
In system development, to provide the necessary resources for the correct
operation of a functional unit.

switch expression
The controlling expression of a switch statement.

switch statement
A C language statement that causes control to be transferred to one of
several statements depending on the value of an expression.

system default
A default value defined in the system profile.

system process
An implementation-dependent object, other than a process executing an
application, that has a process ID. X/Open.

T
tab character

A character that indicates that printing or displaying should start at the
next horizontal position on the current line. The tab is designated by '\t' in
the C language and is named in the portable character set.

text file
A file that contains only printable characters.

thread A stream of computer instructions that is in control of a process. In some
operating systems, a thread is the smallest unit of operation in a process.
Several threads can run concurrently, performing different jobs.

tilde One of the accent marks in Latin script (~).

token The basic syntactic unit of a computing language. A token consists of one
or more characters, excluding the blank character and excluding characters
within a string constant or delimited identifier.

toolchain
A collection of programs or tools used to develop a product.

Glossary 269

traceback
A section of a dump that provides information about the stack frame, the
program unit address, the entry point of the routine, the statement number,
and status of the routines on the call-chain at the time the traceback was
produced.

trigraph
A sequence of three graphic characters that represent another graphic
character. For example, in the C programming language, the trigraph ??= is
used to denote the # character.

truncate
To shorten a field, value, statement, or string.

type definition
A definition of a name for a data type.

type specifier
In programming languages, a keyword used to indicate the data type of an
object or function being declared.

U
ultimate consumer

The target for data in an input and output operation. An ultimate
consumer can be a file, a device, or an array of bytes in memory.

ultimate producer
The source for data in an input and output operation. An ultimate
producer can be a file, a device, or an array of bytes in memory.

unary expression
An expression that contains one operand.

undefined behavior
Referring to a program or function that might produce erroneous results
without warning because of its use of an indeterminate value, or because
of erroneous program constructs or erroneous data. See also
implementation-defined.

union tag
An identifier that names a union data type.

UNIX System Services
An element of z/OS that creates a UNIX environment that conforms to
XPG4 UNIX 1995 specifications and that provides two open-system
interfaces on the z/OS operating system: an application programming
interface (API) and an interactive shell interface.

UTC See Coordinated Universal Time.

V
volatile attribute

An attribute of a data object that indicates the object is changeable. Any
expression referring to a volatile object is evaluated immediately (for
example, assignments).

270 User's Guide

W
while statement

A looping statement that executes one or more instructions repeatedly
during the time that a condition is true.

white space
A sequence of one or more characters, such as the blank character, the
newline character, or the tab character, that belong to the space character
class.

wide character
A character whose range of values can represent distinct codes for all
members of the largest extended character set specified among the
supporting locales.

wide-character code
An integral value that corresponds to a single graphic symbol or control
code.

wide-character string
A contiguous sequence of wide characters terminated by and including the
first instance of a null wide character.

wide-oriented stream
A wide-oriented stream refers to a stream which only wide character
input/output is allowed.

word A fundamental unit of storage that refers to the amount of data that can be
processed at a time. Word size is a characteristic of the computer
architecture. See also doubleword, halfword.

working directory
The active directory. When a file name is specified without a directory, the
current directory is searched.

writable static area (WSA)
An area of memory in a program that is modifiable during the running of
a program. Typically, this area contains global variables and function and
variable descriptors for dynamic link libraries (DLLs).

WSA See writable static area.

Glossary 271

272 User's Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Corporation
J74/G4
555 Bailey Avenue
San Jose, CA 95141-1099
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2018 273

Programming interface information
This publication documents intended Programming Interfaces that allow the
customer to write Enterprise Metal C for z/OS programs.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
Trademark information (www.ibm.com/legal/copytrade.shtml).

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Standards
The following standard is supported:
v The C language is consistent with Programming languages - C (ISO/IEC 9899:1999)

and a subset of Programming languages - C (ISO/IEC 9899:2011). For more
information, see International Organization for Standardization (ISO)
(www.iso.org).

The following standards are supported in combination with the z/OS UNIX
System Services element:
v A subset of IEEE Std. 1003.1-2001 (Single UNIX Specification, Version 3). For more

information, see IEEE (www.ieee.org).
v IEEE Std 1003.1—1990, IEEE Standard Information Technology—Portable Operating

System Interface (POSIX)—Part 1: System Application Program Interface (API) [C
language], copyright 1990 by the Institute of Electrical and Electronic Engineers,
Inc.

v The core features of IEEE P1003.1a Draft 6 July 1991, Draft Revision to Information
Technology—Portable Operating System Interface (POSIX), Part 1: System Application
Program Interface (API) [C Language], copyright 1992 by the Institute of Electrical
and Electronic Engineers, Inc.

v IEEE Std 1003.2—1992, IEEE Standard Information Technology—Portable Operating
System Interface (POSIX)—Part 2: Shells and Utilities, copyright 1990 by the
Institute of Electrical and Electronic Engineers, Inc.

v The core features of IEEE Std P1003.4a/D6—1992, IEEE Draft Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System Application
Program Interface (API)—Amendment 2: Threads Extension [C language], copyright
1990 by the Institute of Electrical and Electronic Engineers, Inc.

v The core features of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point
Arithmetic (ANSI), copyright 1985 by the Institute of Electrical and Electronic
Engineers, Inc.

274 User's Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.iso.org
http://www.iso.org
http://www.ieee.org

v X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2,
copyright 1994 by The Open Group

v X/Open CAE Specification, Networking Services, Issue 4, copyright 1994 by The
Open Group

v X/Open Specification Programming Languages, Issue 3, Common Usage C, copyright
1988, 1989, and 1992 by The Open Group

v United States Government's Federal Information Processing Standard (FIPS)
publication for the programming language C, FIPS-160, issued by National Institute
of Standards and Technology, 1991

Notices 275

276 User's Guide

Index

Special characters
–q options syntax 225

A
abbreviated compiler options 11
accessibility 233

contact IBM 233
features 233

AGGRCOPY compiler option 22
AGGREGATE compiler option 23
allocation, standard files with

BPXBATCH 209
ANSIALIAS compiler option 24
ARCHITECTURE compiler option 27
ARGPARSE compiler option 31
ARMODE compiler option 32
as shell command

options 213
ASM compiler option 33
ASMDATASIZE compiler option 34
assembling

HLASM source files 191
ASSERT(NORESRICT) compiler

option 35
ASSERT(RESTRICT) compiler option 35
assistive technologies 233
attributes, for DD statements 201

B
binding 4
BITFIELD compiler option 36
BPARM JCL parameter 199
BPXBATCH program

syntax 209
building

programs 197
building 197

C
C language 2
cataloged procedures 199

data sets used 201
CDAHLASM command

options 205
CHARS compiler option 37
command

syntax diagrams vii
COMPACT compiler option 38
compiler

error messages 57
input 161, 166

valid input/output file types 164
listing 83, 155, 156

include file option
(SHOWINC) 131

compiler (continued)
listing (continued)

source program option
(SOURCE) 134

object module optimization 108
output

create listing file 163
create preprocessor output 163
using compiler options to

specify 162
using DD statements to

specify 167
valid input/output file types 164

using cataloged procedures supplied
by IBM 165, 186

compiler options
#pragma options 9
abbreviations 11
defaults 11
IPA considerations 7
overriding defaults 7
pragma options 9

COMPRESS compiler option 40
concatenation

multiple libraries 167
concatenation, multiple libraries 167
configuration file for metalc 221

default name 224
contact

z/OS 233
control section (CSECT)

compiler option 43
CONVLIT compiler option 41
CPARM JCL parameter 199
cross-reference table 156
CSECT compiler option 43

D
data sets

concatenating 167
supported attributes 201
usage 200

data types, preserving unsignedness 150
ddname

defaults 200
DEBUG compiler option 46
debugging

errors 55
SERVICE compiler option 128
SEVERITY compiler option 130

default
compiler options 11
output file names 84
overriding compiler option 7

DEFINE compiler option 48
digraphs, DIGRAPH compiler option 49
disk search sequence

LSEARCH compiler option 91
SEARCH compiler option 126

DSAUSER compiler option 50

E
efficiency, object module

optimization 108
ENUMSIZE compiler option 51
environment variable

used to specify system and
operational information to
metalc 219

EPILOG compiler option 53
error

messages
directing to your terminal 144

escaping special characters 8, 166
EVENTS compiler option 55
exception handling

compiler error message severity
levels 57

EXPMAC compiler option 56
external

names
long name support 88

F
feature test macro 173
features 3
feedback xi
files

names
generated default 84
include files 173

searching paths 91, 126
FLAG compiler option 57
flag options syntax 226
FLOAT compiler option 58

G
GOFF compiler option 63

H
HALT compiler option 64
HALTONMSG compiler option 65
header files

system 167
heading information 155

for IPA Link listings 157
HGPR compiler option 66
HLASM

as utility 191
HOT compiler option 67

I
IAP

IPA link step
listing heading information 157

ILP32 compiler option 89

© Copyright IBM Corp. 2018 277

INCLUDE compiler option 68
include files

naming 173
nested 104
preprocessor directive

syntax 173
record format 173
SHOWINC compiler option 131

INFILE parameter 199
INFO compiler option 69
INITAUTO compiler option 71
INLINE compiler option

description 73
input

compiler 161, 166
record sequence numbers 127

IPA
IAP link step

compiler options map listing
section 158

global symbols map listing
section 158

listing message summary 159
listing messages section 159
listing prolog 157
object file map listing section 157
partition map listing section 158
source file map listing section 157

invoking from metalc utility 169
IPA compile step

flow of processing 170
IPA compiler option 75
IPA link step

flow of processing 171
invoking IPA from metalc

utility 185
IPA link step control file 186
listing overview 155, 156
object file directives 190
overview 185
troubleshooting 190

overview 170
using cataloged procedures 165

IPACNTL data set 200, 202
IPARM JCL parameter 199
IRUN JCL parameter 199

J
JCL (Job Control Language)

C comments 138

K
keyboard

navigation 233
PF keys 233
shortcut keys 233

KEYWORD compiler option 78

L
LANGLVL compiler option 79
LIBANSI compiler option 82
library 161
LIBRARY JCL parameter 199

linking 4
LIST compiler option 83
listings 155, 156

include file option (SHOWINC) 131
IPA compile step, using 155
IPA link step compiler options

map 158
IPA link step global symbols

map 158
IPA link step heading

information 157
IPA link step message summary 159
IPA link step messages 159
IPA link step object file map 157
IPA link step partition map 158
IPA link step prolog 157
IPA link step source file map 157
IPA link step, using 156
message summary 156

LOCALE compiler option 85
long names

support 88
LONGLONG compiler option 87
LONGNAME compiler option 88
LP64 compiler option 89
LPARM parameter 199
LSEARCH compiler option 91

M
macor

feature test 173
macro

expanded in source listing 56
mainframe

education x
maintaining

programs through makefiles 207
make utility

compiling source and object files 169
creating makefiles 207
maintaining application

programs 207
MAKEDEP compiler option 97
makefiles

creating 207
maintaining application

programs 207
MARGINS compiler option 99
MAXMEM compiler option 100
MEMBER JCL parameter 199
memory

files, compiler work-files 102
MAXMEM compiler option 100
MEMORY compiler option 102

messages 156
directing to your terminal 144
on IPA link step listings 159
specifying severity of 57

METAL compiler option 103
metalc compiler utility 4
metalc shell command

environment variables 219
specifying

system and operational
information to metalc 219

metalc utility 219

metalc utility (continued)
compiling source and object files 169
run by the make utility 169

MVS (Multiple Virtual System)
z/OS batch

running shell scripts and
applications 209

N
natural reentrancy

generating 117
navigation

keyboard 233
NESTINC compiler option 104
NOAGGREGATE compiler option 23
NOANSIALIAS compiler option 24
NOARGPARSE compiler option 31
NOARMODE compiler option 32
NOASM compiler option 33
NOCOMPACT compiler option 38
NOCOMPRESS compiler option 40
NOCONVLIT compiler option 41
NOCSECT compiler option 43
NODEBUG compiler option 46
NODIGRAPH compiler option 49
NODSAUSER compiler option 50
NOEVENTS compiler option 55
NOEXPMAC compiler option 56
NOFLAG compiler option 57
NOGOFF compiler option 63
NOHALTONMSG compiler option 65
NOHGPR compiler option 66
NOHOT compiler option 67
NOINCLUDE compiler option 68
NOINFO compiler option 69
NOINITAUTO compiler option 71
NOINLINE compiler option 73
NOIPA compiler option 75
NOKEYWORD compiler option 78
NOLIBANSI compiler option 82
NOLIST compiler option 83
NOLOCALE compiler option 85
NOLONGLONG compiler option 87
NOLONGNAME compiler option 88
NOLSEARCH compiler option 91
NOMARGINS compiler option 99
NOMAXMEM compiler option 100
NOMEMORY compiler option 102
NOMETAL compiler option 103
NONESTINC compiler option 104
NOOE compiler option 104
NOOPTFILE compiler option 106
NOOPTIMIZE compiler option 108
NOPHASEID compiler option 111
NOPPONLY compiler option 112
NOPREFETCH compiler option 115
NORENT compiler option 117
NORESRICT compiler option 120
NOROCONST compiler option 121
NOROSTRING compiler option 123
NOSEARCH compiler option 126
NOSEQUENCE compiler option 127
NOSERVICE compiler option 128
NOSEVERITY compiler option 130
NOSHOWINC compiler option 131

278 User's Guide

NOSHOWMACROS compiler
option 132

NOSOURCE compiler option 134
NOSPLITLIST compiler option 135
NOSSCOMM compiler option 138
NOSTRICT compiler option 139
NOSTRICT_INDUCTION compiler

option 141
NOSUPPRESS compiler option 142
NOTERMINAL compiler option 144
NOUNROLL compiler option 149
NOUPCONV compiler option 150
NOVECTOR compiler option 151
NOWARN64 compiler option 153
NOWSIZEOF compiler option 154

O
object

code 161
module

optimization 108
OBJECT

JCL parameter 199
object files

object file browse 172
working with 172

object files variations
object file variation identification 173

OE compiler option 104
OMVS

OE compiler option 104
OPARM JCL parameter 199
OPTFILE compiler option 106
optimization

object module 108
OPTIMIZE compiler option 108
storage requirements 108
TUNE compiler option 145

OPTIMIZE compiler option 108
options

compiler
compiler options 10

OUTFILE parameter 199

P
PDF documents ix
PHASEID compiler option 111
PPARM

JCL parameter 199
PPONLY compiler option 112
pragmas

options 9
PREFETCH compiler option 115
preprocessor directives

effects of PPONLY compiler
option 112

include 173
primary data set

specifying input to the compiler 161
primary input

compiler 161
PROLOG compiler option 116

R
record format

system files and libraries
OPTFILE compiler option 106
SEARCH compiler option 126
using 173

user files and libraries
using 173

reentrancy
RENT compiler option 117

reentrant code
RENT compiler option 117

RENT compiler option syntax 117
RESERVED_REG compiler option 119
RESTRICT compiler option 120
ROCONST compiler option 121
ROSTRING compiler option 123
ROUND compiler option 124

S
SEARCH compiler option 126
search sequence

system include files 126
user include files 91

secondary data set
libraries 167

secondary input
compiler 162, 167

sending to IBM
reader comments xi

SEQUENCE compiler option 127
sequence numbers on input records 127
SERVICE compiler option 128
SEVERITY compiler option 130
shell

compiling using metalc 169
using BPXBATCH to run commands

or scripts 209
shortcut keys 233
SHOWINC compiler option 131
SHOWMACROS compiler option 132
SKIPSRC compiler option 133
source

program
comment (SSCOMM compiler

option) 138
compiler listing options 131, 134
file names in include files 173
generating reentrant code 117
input data set 161
margins 99
SEQUENCE compiler option 127

source code
compiling using metalc 168

SOURCE compiler option 134
special characters, escaping 8, 166
SPLITLIST compiler option 135
SSCOMM compiler option 138
standard files, allocation for

BPXBATCH 209
standards

ANSI compiler option 79
LIBANSI compiler option 82

STEPLIB
data set 200, 201, 203

storage optimization 108
STRICT compiler option 139
STRICT_INDUCTION compiler

option 141
structure and union maps, listing 156
SUPPRESS compiler option 142
syntax diagrams

how to read vii
SYSCPRT data set 163, 200, 201, 203
SYSEVENT data set

description of 202
SYSIN data set

description of 202, 204
SYSIN data set for stdin

description of 201
primary input to the compiler 166
usage 200

SYSLIB data set
description of 201, 203, 204
specifying 167
usage 200

SYSLIN data set
description of 201, 203
usage 200

SYSOUT data set
description of 201, 203, 204
usage 200

SYSPRINT data set
usage 200

SYSSTATE compiler option 143
system

files and libraries 106, 126
system header files 167
SYSUT1 data set 200, 201
SYSUT5-10 data sets 201
SYSUTIP 202, 203

T
technical support x
TERMINAL compiler option 144
TUNE compiler option 145
type conversion, preserving

unsignedness 150
type conversions 150
typographical conventions vii

U
UNDEFINE compiler option 148
UNIX System Services 4
UNROLL compiler option 149
unsignedness preservation, type

conversion 150
UPCONV compiler option 150
user

include files
LSEARCH compiler option 91
SEARCH compiler option 126
specifying with #include

directive 173
user interface

ISPF 233
TSO/E 233

USERLIB 92, 167, 202

Index 279

V
VECTOR compiler option 151

W
WARN64 compiler option 153
work data sets 200
WSIZEOF compiler option 154

Z
z/OS Basic Skills Knowledge Center x
z/OS batch

compiling under 165, 186
running shell scripts and

applications 209
z/OS Language Environment

search sequence
with LSEARCH compiler

option 91
z/OS UNIX System Services 4

as utility 191
compiling using metalc 169
maintaining through makefiles 207
OE compiler option 104

280 User's Guide

IBM®

Product Number: 5655-MCE

Printed in USA

SC27-9051-00

	Contents
	About this document
	Where to find more information
	z/OS Basic Skills in IBM Knowledge Center

	Technical support
	How to send your comments to IBM
	If you have a technical problem

	Chapter 1. About IBM Enterprise Metal C for z/OS
	The Enterprise Metal C for z/OS compiler
	The C language
	Enterprise Metal C for z/OS compiler features

	metalc utility
	About assembling, linking, and binding
	File format considerations

	z/OS UNIX System Services
	Additional features of Enterprise Metal C for z/OS

	Chapter 2. Compiler options
	Specifying compiler options
	IPA considerations
	Using special characters
	Specifying compiler options using #pragma options
	Specifying compiler options under z/OS UNIX

	Compiler option defaults
	Summary of compiler options
	Compiler output options
	Compiler input options
	Language element control options
	Object code control options
	Floating-point and integer control options
	Error-checking and debugging options
	Listings, messages, and compiler information options
	Optimization and tuning options
	Portability and migration options
	Compiler customization options
	Description of compiler options
	AGGRCOPY
	AGGREGATE | NOAGGREGATE
	ANSIALIAS | NOANSIALIAS
	ARCHITECTURE
	ARGPARSE | NOARGPARSE
	ARMODE | NOARMODE
	ASM | NOASM
	ASMDATASIZE
	ASSERT(RESTRICT) | ASSERT(NORESTRICT)
	BITFIELD(SIGNED) | BITFIELD(UNSIGNED)
	CHARS(SIGNED) | CHARS(UNSIGNED)
	COMPACT | NOCOMPACT
	COMPRESS | NOCOMPRESS
	CONVLIT | NOCONVLIT
	CSECT | NOCSECT
	DEBUG | NODEBUG
	DEFINE
	DIGRAPH | NODIGRAPH
	DSAUSER | NODSAUSER
	ENUMSIZE
	EPILOG
	EVENTS | NOEVENTS
	EXPMAC | NOEXPMAC
	FLAG | NOFLAG
	FLOAT
	GOFF | NOGOFF
	HALT
	HALTONMSG | NOHALTONMSG
	HGPR | NOHGPR
	HOT | NOHOT
	INCLUDE | NOINCLUDE
	INFO | NOINFO
	INITAUTO | NOINITAUTO
	INLINE | NOINLINE
	IPA | NOIPA
	KEYWORD | NOKEYWORD
	LANGLVL
	LIBANSI | NOLIBANSI
	LIST | NOLIST
	LOCALE | NOLOCALE
	LONGLONG | NOLONGLONG
	LONGNAME | NOLONGNAME
	LP64 | ILP32
	LSEARCH | NOLSEARCH
	MAKEDEP
	MARGINS | NOMARGINS
	MAXMEM | NOMAXMEM
	MEMORY | NOMEMORY
	METAL
	NESTINC | NONESTINC
	OE | NOOE
	OPTFILE | NOOPTFILE
	OPTIMIZE | NOOPTIMIZE
	PHASEID | NOPHASEID
	PPONLY | NOPPONLY
	PREFETCH | NOPREFETCH
	PROLOG
	RENT | NORENT
	RESERVED_REG
	RESTRICT | NORESTRICT
	ROCONST | NOROCONST
	ROSTRING | NOROSTRING
	ROUND
	SEARCH | NOSEARCH
	SEQUENCE | NOSEQUENCE
	SERVICE | NOSERVICE
	SEVERITY | NOSEVERITY
	SHOWINC | NOSHOWINC
	SHOWMACROS | NOSHOWMACROS
	SKIPSRC
	SOURCE | NOSOURCE
	SPLITLIST | NOSPLITLIST
	SSCOMM | NOSSCOMM
	STRICT | NOSTRICT
	STRICT_INDUCTION | NOSTRICT_INDUCTION
	SUPPRESS | NOSUPPRESS
	SYSSTATE
	TERMINAL | NOTERMINAL
	TUNE
	UNDEFINE
	UNROLL | NOUNROLL
	UPCONV | NOUPCONV
	VECTOR | NOVECTOR
	WARN64 | NOWARN64
	WSIZEOF | NOWSIZEOF

	Using compiler listing
	IPA considerations
	Compiler listing components

	Using the IPA link step listing
	IPA link step listing components

	Chapter 3. Compiling
	Input to the compiler
	Output from the compiler
	Specifying output files
	Listing output
	Preprocessor output

	Valid input/output file types
	Compiling under z/OS batch
	Using cataloged procedures

	Using special characters
	Specifying source files
	Specifying include files
	Specifying output files
	Compiling in the z/OS UNIX System Services environment
	Building a 64-bit application using metalc utility
	Invoking IPA using metalc utility

	Compiling with IPA
	IPA compile step
	IPA link step

	Working with object files
	Browsing object files
	Identifying object file variations

	Using feature test macros
	Using include files
	Specifying include file names
	Forming file names
	Forming data set names with LSEARCH | SEARCH options
	Search sequence
	Determining whether the file name is in absolute form
	Using SEARCH and LSEARCH

	Search sequences for include files

	Chapter 4. Using IPA link step with programs
	Invoking IPA using metalc utility
	Compiling under z/OS batch
	Reference Information
	IPA link step control file
	Object file directives understood by IPA

	Troubleshooting

	Chapter 5. Assembling
	Chapter 6. Binding programs
	Binding under z/OS UNIX
	Binding under z/OS batch

	Chapter 7. Running a C application
	Chapter 8. Building Enterprise Metal C for z/OS programs
	Chapter 9. Cataloged procedures
	Tailoring cataloged procedures
	Data sets used
	Description of data sets used

	Chapter 10. CDAHLASM — Use the HLASM assembler to create DWARF debug information
	Chapter 11. make utility
	Creating makefiles

	Chapter 12. BPXBATCH utility
	Chapter 13. as — Use the HLASM assembler to produce object files
	Chapter 14. metalc — Compiler invocation using a customizable configuration file
	Setting up the compilation environment
	Environment variables

	Setting up a configuration file
	Configuration file attributes
	Tailoring a configuration file
	Default configuration file

	Invoking the compiler
	Supported options
	–q options syntax
	Flag options syntax
	Specifying compiler options
	Specifying compiler options on the command line
	Specifying flag options
	Specifying compiler options in a configuration file
	Specifying compiler options in your program source files
	Specifying compiler options for architecture-specific 32-bit or 64-bit compilation

	Appendix. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Notices
	Programming interface information
	Trademarks
	Standards

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

